Global stability of a biological model with time delay
Authors:
Suzanne M. Lenhart and Curtis C. Travis
Journal:
Proc. Amer. Math. Soc. 96 (1986), 7578
MSC:
Primary 34K20; Secondary 92A15
MathSciNet review:
813814
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: This paper gives necessary and sufficient conditions for global stability of certain logistic delay differential equations for all values of the delay.
 [1]
Herbert
R. Bailey and Michael
Z. Williams, Some results on the differentialdifference equation
𝑥(𝑡)=∑^{𝑁}ᵢ₌₀𝐴ᵢ𝑥(𝑡𝑇ᵢ),
J. Math. Anal. Appl. 15 (1966), 569–587. MR 0197886
(33 #6046)
 [2]
J. R. Beddington and R. M. May, Time delays are not necessarily destabilizing, Math. Biosci. 27 (1975), 109117.
 [3]
Stavros
N. Busenberg and Curtis
C. Travis, On the use of reduciblefunctionaldifferential
equations in biological models, J. Math. Anal. Appl.
89 (1982), no. 1, 46–66. MR 672188
(84f:34102), http://dx.doi.org/10.1016/0022247X(82)900907
 [4]
Donald
S. Cohen, Evangelos
Coutsias, and John
C. Neu, Stable oscillations in single species growth models with
hereditary effects, Math. Biosci. 44 (1979),
no. 34, 255–267. MR 532312
(80c:92015), http://dx.doi.org/10.1016/00255564(79)900853
 [5]
Kenneth
L. Cooke and José
M. Ferreira, Stability conditions for linear retarded
functionaldifferential equations, J. Math. Anal. Appl.
96 (1983), no. 2, 480–504. MR 719331
(84k:34079), http://dx.doi.org/10.1016/0022247X(83)900562
 [6]
Jim
M. Cushing, Integrodifferential equations and delay models in
population dynamics, SpringerVerlag, Berlin, 1977. Lecture Notes in
Biomathematics, Vol. 20. MR 0496838
(58 #15300)
 [7]
R.
Datko, A procedure for determination of the exponential stability
of certain differentialdifference equations, Quart. Appl. Math.
36 (1978/79), no. 3, 279–292. MR 508772
(80c:34080)
 [8]
D. M. Fargue, Reducibilité des sytèmes hereditaires a des systèmes dynamiques, C. R. Acad. Sci. Paris, Sér. B. 277 (1973), 471473.
 [9]
Jack
K. Hale, Sufficient conditions for stability and instability of
autonomous functionaldifferential equations, J. Differential
Equations 1 (1965), 452–482. MR 0183938
(32 #1414)
 [10]
, Theory of functional differential equations, SpringerVerlag, New York, 1977.
 [11]
J. K. Hale, E. F. Infante, and F. P. Tsen, Stability in linear delay equations, Lefschetz Center for Dynamical Systems, Brown University Report #8223.
 [12]
N.
D. Hayes, Roots of the transcendental equation associated with a
certain differencedifferential equation, J. London Math. Soc.
25 (1950), 226–232. MR 0036426
(12,106d)
 [13]
U. S. Koslesov, Properties of solutions of a class of equations with lag which describe the dynamics of change in the population of a species with the age structure taken into account, Math. USSRSb. 45 (1983), 91100.
 [14]
Suzanne
M. Lenhart and Curtis
C. Travis, Stability of functional partial differential
equations, J. Differential Equations 58 (1985),
no. 2, 212–227. MR 794769
(87g:45011), http://dx.doi.org/10.1016/00220396(85)900130
 [15]
A. Mazarov, On the differentialdifference growth equation, Search 4 (1973), 199201.
 [16]
Norman
MacDonald, Time lags in biological models, Lecture Notes in
Biomathematics, vol. 27, SpringerVerlag, Berlin, 1978. MR 521439
(80j:92010)
 [17]
R.
J. Plemmons, 𝑀matrix characterizations. I. Nonsingular
𝑀matrices, Linear Algebra and Appl. 18
(1977), no. 2, 175–188. MR 0444681
(56 #3031)
 [18]
Wilfred
M. Post and Curtis
C. Travis, Global stability in ecological models with continuous
time delay, Integral and functional differential equations (Proc.
Conf., West Virginia Univ., Morgantown, W. Va., 1979), Lecture Notes in
Pure and Appl. Math., vol. 67, Dekker, New York, 1981,
pp. 241–250. MR 617054
(82j:92056)
 [19]
Angelika
WörzBusekros, Global stability in ecological systems with
continuous time delay, SIAM J. Appl. Math. 35 (1978),
no. 1, 123–134. MR 0490069
(58 #9429)
 [1]
 H. R. Bailey and M. Z. Williams, Some results on the differential difference equation , J. Math. Anal. Appl. 15 (1966), 569587. MR 0197886 (33:6046)
 [2]
 J. R. Beddington and R. M. May, Time delays are not necessarily destabilizing, Math. Biosci. 27 (1975), 109117.
 [3]
 S. N. Busenberg and C. C. Travis, On the use of reduciblefunctional differential equations in biological models, J. Math. Anal. Appl. 89 (1982), 4666. MR 672188 (84f:34102)
 [4]
 D. S. Cohen, E. Coutsias, and J. Neu, Stable oscillations in single species growth models with hereditary effects, Math. Biosci. 44 (1979), 255267. MR 532312 (80c:92015)
 [5]
 K. L. Cooke and J. M. Ferreira, Stability conditions for linear retarded functional differential equations, preprint. MR 719331 (84k:34079)
 [6]
 J. M. Cushing, Integrodifferential equations and delay models in population dynamics, Lecture Notes in Biomathematics, no. 20, SpringerVerlag, Berlin, 1977. MR 0496838 (58:15300)
 [7]
 R. Datko, A procedure for determination of the exponential stability of certain differentialdifference equations, Quart. Appl. Math. 36 (1978), 279292. MR 508772 (80c:34080)
 [8]
 D. M. Fargue, Reducibilité des sytèmes hereditaires a des systèmes dynamiques, C. R. Acad. Sci. Paris, Sér. B. 277 (1973), 471473.
 [9]
 J. K. Hale, Sufficient conditions for stability and instability of autonomous functionaldifferential equations, J. Differential Equations 1 (1965), 452482. MR 0183938 (32:1414)
 [10]
 , Theory of functional differential equations, SpringerVerlag, New York, 1977.
 [11]
 J. K. Hale, E. F. Infante, and F. P. Tsen, Stability in linear delay equations, Lefschetz Center for Dynamical Systems, Brown University Report #8223.
 [12]
 N. D. Hayes, Roots of the transcendental equation associated with a certain differentialdifference equation, J. London Math. Soc. (2) 25 (1950), 226232. MR 0036426 (12:106d)
 [13]
 U. S. Koslesov, Properties of solutions of a class of equations with lag which describe the dynamics of change in the population of a species with the age structure taken into account, Math. USSRSb. 45 (1983), 91100.
 [14]
 S. M. Lenhart and C. C. Travis, Stability of functional partial differential equations, J. Differential Equations (to appear). MR 794769 (87g:45011)
 [15]
 A. Mazarov, On the differentialdifference growth equation, Search 4 (1973), 199201.
 [16]
 N. McDonald, Time lags in biological models, Lecture Notes in Biomathematics, no. 27, SpringerVerlag, Berlin, 1978. MR 521439 (80j:92010)
 [17]
 R. V. Plemmons, matrix characterizations. I: Nonsingular matrices, Linear Algebra Appl. 18 (1977), 175188. MR 0444681 (56:3031)
 [18]
 W. M. Post and C. C. Travis, Global stability in ecological models with continuous time delays, Integral and Functional Differential Equations (T. Herdman, H. Stech, and S. Rankin, Eds.), Dekker, New York, 1981, pp. 241249. MR 617054 (82j:92056)
 [19]
 A. WorzBusekros, Global stability in ecological systems with continuous time delays, SIAM J. Appl. Math. 35 (1978), 123134. MR 0490069 (58:9429)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
34K20,
92A15
Retrieve articles in all journals
with MSC:
34K20,
92A15
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939198608138143
PII:
S 00029939(1986)08138143
Keywords:
LotkaVolterra delay differential equation,
global stability,
Liapunov function
Article copyright:
© Copyright 1986 American Mathematical Society
