Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Nonamenability and Borel paradoxical decompositions for locally compact groups


Author: Alan L. T. Paterson
Journal: Proc. Amer. Math. Soc. 96 (1986), 89-90
MSC: Primary 43A07; Secondary 22D05
DOI: https://doi.org/10.1090/S0002-9939-1986-0813817-9
MathSciNet review: 813817
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that a locally compact group $ G$ is not amenable if and only if it admits a Borel paradoxical decomposition.


References [Enhancements On Off] (What's this?)

  • [1] W. R. Emerson, The Hausdorff paradox for general group actions, J. Funct. Anal. 32 (1979), 213-227. MR 534675 (80g:43003)
  • [2] F. P. Greenleaf, Invariant means on topological groups, Van Nostrand, New York, 1969. MR 0251549 (40:4776)
  • [3] D. König, Sur les correspondences multivoques des ensembles, Fund. Math. 8 (1926), 114-134.
  • [4] G. W. Mackey, Induced representations of locally compact groups. I, Ann. of Math. (2) 55 (1952), 101-139. MR 0044536 (13:434a)
  • [5] N. W. Rickert, Some properties of locally compact groups, J. Austral. Math. Soc. 7 (1967), 433-454. MR 0219656 (36:2735)
  • [6] -, Amenable groups and groups with the fixed point property, Trans. Amer. Math. Soc. 127 (1967), 221-232. MR 0222208 (36:5260)
  • [7] A. Tarski, Algebraische Fassung des Massproblems, Fund. Math. 31 (1938), 47-66.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 43A07, 22D05

Retrieve articles in all journals with MSC: 43A07, 22D05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1986-0813817-9
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society