Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Definable automorphisms of $ \mathcal{P}(\omega)/\mathrm{fin}$


Author: Boban Veličković
Journal: Proc. Amer. Math. Soc. 96 (1986), 130-135
MSC: Primary 03E35; Secondary 03E15
MathSciNet review: 813825
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We investigate definable automorphisms of $ \mathcal{P}\left( \omega \right)/{\text{fin}}$ and show that e.g. every Borel automorphism is trivial. The existence of nontrivial projective automorphisms is consistent and independent from $ {\text{ZFC + CH}}$.


References [Enhancements On Off] (What's this?)

  • [1] Keith J. Devlin, Aspects of constructibility, Lecture Notes in Mathematics, Vol. 354, Springer-Verlag, Berlin-New York, 1973. MR 0376351
  • [2] Thomas Jech, Set theory, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. Pure and Applied Mathematics. MR 506523
  • [3] Kenneth Kunen, Set theory, Studies in Logic and the Foundations of Mathematics, vol. 102, North-Holland Publishing Co., Amsterdam, 1983. An introduction to independence proofs; Reprint of the 1980 original. MR 756630
  • [4] Richard Laver, Linear orders in (𝜔)^{𝜔} under eventual dominance, Logic Colloquium ’78 (Mons, 1978) Stud. Logic Foundations Math., vol. 97, North-Holland, Amsterdam-New York, 1979, pp. 299–302. MR 567675
  • [5] Jan van Mill, An introduction to 𝛽𝜔, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 503–567. MR 776630
  • [6] Yiannis N. Moschovakis, Descriptive set theory, Studies in Logic and the Foundations of Mathematics, vol. 100, North-Holland Publishing Co., Amsterdam-New York, 1980. MR 561709
  • [7] Walter Rudin, Homogeneity problems in the theory of Čech compactifications, Duke Math. J. 23 (1956), 409–419. MR 0080902
  • [8] -, Real and complex analysis, McGraw-Hill, London, 1970.
  • [9] Saharon Shelah, Proper forcing, Lecture Notes in Mathematics, vol. 940, Springer-Verlag, Berlin-New York, 1982. MR 675955
  • [10] Saharon Shelah, Can you take Solovay’s inaccessible away?, Israel J. Math. 48 (1984), no. 1, 1–47. MR 768264, 10.1007/BF02760522
  • [11] Robert M. Solovay, A model of set-theory in which every set of reals is Lebesgue measurable, Ann. of Math. (2) 92 (1970), 1–56. MR 0265151

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 03E35, 03E15

Retrieve articles in all journals with MSC: 03E35, 03E15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1986-0813825-8
Keywords: $ \mathcal{P}\left( \omega \right)/{\text{fin}}$, trivial automorphism
Article copyright: © Copyright 1986 American Mathematical Society