Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Definable automorphisms of $ \mathcal{P}(\omega)/\mathrm{fin}$


Author: Boban Veličković
Journal: Proc. Amer. Math. Soc. 96 (1986), 130-135
MSC: Primary 03E35; Secondary 03E15
DOI: https://doi.org/10.1090/S0002-9939-1986-0813825-8
MathSciNet review: 813825
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We investigate definable automorphisms of $ \mathcal{P}\left( \omega \right)/{\text{fin}}$ and show that e.g. every Borel automorphism is trivial. The existence of nontrivial projective automorphisms is consistent and independent from $ {\text{ZFC + CH}}$.


References [Enhancements On Off] (What's this?)

  • [1] Keith J. Devlin, Aspects of constructibility, Lecture Notes in Mathematics, Vol. 354, Springer-Verlag, Berlin-New York, 1973. MR 0376351
  • [2] Thomas Jech, Set theory, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. Pure and Applied Mathematics. MR 506523
  • [3] Kenneth Kunen, Set theory, Studies in Logic and the Foundations of Mathematics, vol. 102, North-Holland Publishing Co., Amsterdam, 1983. An introduction to independence proofs; Reprint of the 1980 original. MR 756630
  • [4] Richard Laver, Linear orders in (𝜔)^{𝜔} under eventual dominance, Logic Colloquium ’78 (Mons, 1978) Stud. Logic Foundations Math., vol. 97, North-Holland, Amsterdam-New York, 1979, pp. 299–302. MR 567675
  • [5] Jan van Mill, An introduction to 𝛽𝜔, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 503–567. MR 776630
  • [6] Yiannis N. Moschovakis, Descriptive set theory, Studies in Logic and the Foundations of Mathematics, vol. 100, North-Holland Publishing Co., Amsterdam-New York, 1980. MR 561709
  • [7] Walter Rudin, Homogeneity problems in the theory of Čech compactifications, Duke Math. J. 23 (1956), 409–419. MR 0080902
  • [8] -, Real and complex analysis, McGraw-Hill, London, 1970.
  • [9] Saharon Shelah, Proper forcing, Lecture Notes in Mathematics, vol. 940, Springer-Verlag, Berlin-New York, 1982. MR 675955
  • [10] Saharon Shelah, Can you take Solovay’s inaccessible away?, Israel J. Math. 48 (1984), no. 1, 1–47. MR 768264, https://doi.org/10.1007/BF02760522
  • [11] Robert M. Solovay, A model of set-theory in which every set of reals is Lebesgue measurable, Ann. of Math. (2) 92 (1970), 1–56. MR 0265151, https://doi.org/10.2307/1970696

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 03E35, 03E15

Retrieve articles in all journals with MSC: 03E35, 03E15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1986-0813825-8
Keywords: $ \mathcal{P}\left( \omega \right)/{\text{fin}}$, trivial automorphism
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society