Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Definable automorphisms of $ \mathcal{P}(\omega)/\mathrm{fin}$


Author: Boban Veličković
Journal: Proc. Amer. Math. Soc. 96 (1986), 130-135
MSC: Primary 03E35; Secondary 03E15
DOI: https://doi.org/10.1090/S0002-9939-1986-0813825-8
MathSciNet review: 813825
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We investigate definable automorphisms of $ \mathcal{P}\left( \omega \right)/{\text{fin}}$ and show that e.g. every Borel automorphism is trivial. The existence of nontrivial projective automorphisms is consistent and independent from $ {\text{ZFC + CH}}$.


References [Enhancements On Off] (What's this?)

  • [1] K. Devlin, Aspects of constructibility, Lecture Notes in Math., vol. 354, Springer-Verlag, Berlin and New York, 1973. MR 0376351 (51:12527)
  • [2] T. J. Jech, Set theory, Academic Press, New York, 1978. MR 506523 (80a:03062)
  • [3] K. Kunen, Set theory, North-Holland, Amsterdam, 1981. MR 756630 (85e:03003)
  • [4] R. Laver, Linear order in $ {\left( \omega \right)^\omega }$ under eventual dominance, Logic Colloquim 78 (M. Boffa, D. van Dalen and K. McAloon, eds.), North-Holland, Amsterdam, 1979, pp. 209-302. MR 567675 (81e:03051)
  • [5] J. van Mill, Introduction to $ \beta \omega $, Handbook of Set-Theoretic Topology (K. Kunen and J. Vaughan, eds.), North-Holland, Amsterdam, 1984. MR 776630 (86f:54027)
  • [6] Y. Moschovakis, Descriptive set theory, North-Holland, Amsterdam, New York, 1978. MR 561709 (82e:03002)
  • [7] W. Rudin, Homogeneity problems in the theory of Čech compactifications, Duke Math. J. 23 (1956), 409-419. MR 0080902 (18:324d)
  • [8] -, Real and complex analysis, McGraw-Hill, London, 1970.
  • [9] S. Shelah, Proper forcing, Lecture Notes in Math., vol. 940, Springer-Verlag, Berlin, 1982. MR 675955 (84h:03002)
  • [10] -, Can you take Solovay's inaccessible away, Israel J. Math. 48 (1984), 1-47. MR 768264 (86g:03082a)
  • [11] R. Solovay, A model of set theory in which every set of reals is Lebesgue measurable, Ann. of Math. (2) 92 (1970), 1-56. MR 0265151 (42:64)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 03E35, 03E15

Retrieve articles in all journals with MSC: 03E35, 03E15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1986-0813825-8
Keywords: $ \mathcal{P}\left( \omega \right)/{\text{fin}}$, trivial automorphism
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society