Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The $ 3$-dimensionality of certain codimension-$ 3$ decompositions


Author: R. J. Daverman
Journal: Proc. Amer. Math. Soc. 96 (1986), 175-179
MSC: Primary 54B15; Secondary 54C56, 54F45, 55M10, 57N15
DOI: https://doi.org/10.1090/S0002-9939-1986-0813833-7
MathSciNet review: 813833
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved that if $ p$ is a proper mapping of an $ (n + 3)$-manifold $ M$ onto a metric space $ B$ such that each inverse set $ {p^{ - 1}}b$ has the shape of a closed, connected, orientable $ n$-manifold, then $ B$ is $ 3$-dimensional.


References [Enhancements On Off] (What's this?)

  • [BK] R. H. Bing and J. M. Kister, Taming complexes in hyperplanes, Duke Math. J. 31 (1964), 491-511. MR 0164329 (29:1626)
  • [B] A. Borel, Seminar on transformation groups, Ann. of Math. Stud., No. 46, Princeton Univ. Press, Princeton, N. J., 1960. MR 0116341 (22:7129)
  • [D] R. J. Daverman, Decompositions of manifolds into codimension one submanifolds, Compositio Math. (to appear). MR 795714 (87b:57016)
  • [DW1] R. J. Daverman and J. J. Walsh, Decompositions of manifolds into codimension two submanifolds, Trans. Amer. Math. Soc. 288 (1985), 273-291. MR 773061 (87h:57019)
  • [DW2] -, Decompositions into submanifolds that yield generalized manifolds (in preparation).
  • [E] R. D. Edwards, The topology of manifolds and cell-like maps, Proc. Internat. Congr. Math. Helsinki, 1978 (O. Lehto, ed.), Acad. Sci. Fenn. Helsinski, 1980, pp. 111-127. MR 562601 (81g:57010)
  • [HW] W. Hurewicz and H. Wallman, Dimension theory, Princeton Univ. Press, Princeton, N. J., 1941. MR 0006493 (3:312b)
  • [KW] G. Kozlowski and J. J. Walsh, Cell-like mappings on $ 3$-manifolds, Topology 22 (1983), 147-151. MR 683754 (85c:57012)
  • [T] H. Torunczyk, On CE images of the Hulbert cube and characterizations of $ Q$-manifolds, Fund. Math. 106 (1980), 31-40. MR 585543 (83g:57006)
  • [W1] J. J. Walsh, Isotoping mappings to open mappings, Trans. Amer. Math. Soc. 250 (1979), 121-145. MR 530046 (80m:57008)
  • [W2] -, The finite dimensionality of integral homology $ 3$-manifolds, Proc. Amer. Math. Soc. 88 (1983), 154-156. MR 691298 (85c:57013)
  • [W3] -, Dimension, cohomological dimension, and cell-like mappings, Shape Theory and Geometric Topology (S. Mardesic and J. Segal, Eds.), Lecture Notes in Math., vol. 870, Springer-Verlag, Berlin, 1981, pp. 105-118. MR 643526 (83a:57021)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54B15, 54C56, 54F45, 55M10, 57N15

Retrieve articles in all journals with MSC: 54B15, 54C56, 54F45, 55M10, 57N15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1986-0813833-7
Keywords: Cohomological dimension, upper semicontinuous decomposition, proper map, codimension-$ 3$ manifold
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society