NONEXISTENCE OF SOME NONPARAMETRIC SURFACES OF PRESCRIBED MEAN CURVATURE

KIRK E. LANCASTER

ABSTRACT. If Ω ⊂ ℝ² has a reentrant corner, the Dirichlet problem for the equation of prescribed mean curvature H with zero boundary value has no solution when H has constant nonzero sign.

Suppose Ω is a bounded open subset of ℝⁿ, φ ∈ C⁰(∂Ω), and H ∈ C⁰(Ω). Does there exist a solution u ∈ C⁰(Ω) ∩ C²(Ω) of the Dirichlet problem

\[\text{div}(Tu) = nH \quad \text{on } \Omega, \]
\[u = \phi \quad \text{on } \partial \Omega, \]

where Tu = \nabla u/W and W = \sqrt{1 + |\nabla u|^2}? Using barrier arguments, Graham Williams [5] has proven this theorem.

Given n ≥ 2, K ∈ (0, 1/√{n-1}), R > 0, and Ω with locally Lipschitz boundary satisfying a uniform exterior sphere condition of radius R, for \|H\|_∞ small enough there exists ε > 0 depending on n, K, R, and \|H\|_∞ such that whenever φ ∈ C⁰,₁(∂Ω) has Lipschitz constant ≤ K and \sup φ - \inf φ < ε, there exists u ∈ C⁰(Ω) ∩ C²(Ω) which satisfies (1).

It has been known for some time that if the data is small and ∂Ω is smooth, (1) has a (classical) solution [4].

We will say that Ω ⊂ ℝ² has a reentrant corner at P ∈ ∂Ω if for some a, α, β with β - α > π and a > 0, \{(r, θ)|0 < r < a, α ≤ θ ≤ β\} ⊂ Ω, where (r, θ) represents polar coordinates about P. The purpose of this note is to prove the following theorem.

THEOREM. Let n = 2 and Ω be a bounded open subset of ℝ² which has reentrant corner at P ∈ ∂Ω. Suppose H ∈ C⁰(Ω) with H < 0 and φ ∈ C⁰(∂Ω) with φ(P) = 0 and φ ≥ 0. Then there is no solution u ∈ C⁰(Ω) ∩ C²(Ω) of (1).

Using the results of [1], we can determine the behavior of the variational solution of (1) near P when ∂Ω \ {P} has positive curvature. The case n = 2 is interesting because of its relationship to the "membrane analogy" of engineering, which we discuss later.

PROOF. Suppose a solution u of (1) exists. We may assume P is the origin and -3π/4 < α = β. Let V be the interior of the nonconvex quadrilateral symmetric with respect to the x-axis determined by the points (r, θ) = (0, 0), (a, β), (a, -β),...
Set \(m = \inf \{ u(r, \theta) | r = a/4, -\beta \leq \theta \leq \beta \} \). By the strict maximum principle, \(u > 0 \) on \(\Omega \) and so \(m > 0 \).

Define \(k \in C^{0}(\partial V) \) by setting \(k = 0 \) on \(\partial V \cap S \), where \(S = \{(r, \theta) | r < a/2\} \), and \(k = m \) on the two sides of \(\partial V \) not touching \(P \) and by requiring \(k \) to be linear on each of the remaining portions of \(\partial \Omega \).

Now let \(f \) be the variational solution of the Dirichlet problem for the minimal surface equation in \(V \) with boundary values \(k \). Then \(f \in C^{2}(V) \cap C^{0}(\overline{V}\setminus\{P\}) \) and \(f = k \) on \(\partial V \setminus \{P\} \). Notice \(0 \leq f \leq m \) and \(u \geq m \) on \(r = a/4, -\beta \leq \theta \leq \beta \), so \(f \leq u \) on \(r = a/4, -\beta \leq \theta \leq \beta \). Since \(u \geq 0 \) and \(k = 0 \) on \(\partial V \cap S \), we see that \(0 \leq f \leq u \) in \(V \cap \{(r, \theta) | r < a/4\} \). This implies \(f \in C^{0}(\overline{V}) \), in contradiction to [2, pp. 146–147]. Q.E.D.

Suppose \(\Omega \) is connected and simply connected in \(\mathbb{R}^2 \). Consider a uniform bar with cross section \(\Omega \). If we apply couples to the ends and twist the bar, then the stress function \(g \) satisfies

\[
 \Delta g = 2H \quad \text{on} \ \Omega, \quad g = 0 \quad \text{on} \ \partial \Omega,
\]

where \(H = -GA \), \(G \) is the modulus of rigidity of the bar, and \(A \) is the angle of twist per unit length of the bar. The membrane analogy is the assumption that \(g \approx u \) and \(\nabla g \approx \nabla u \) on \(\Omega \), where \(g \) solves (2) and \(u \) solves (1) with \(n = 2 \) and \(\phi = 0 \). If \(\Omega \) has a reentrant corner, no solution of (1) exists and the analogy is invalid. For a discussion of the membrane analogy and some experiments it inspired, see [3].

Acknowledgement. I wish to thank Professor Gulliver for his comments and encouragement.

References

4. R. Gulliver, personal communication.

Department of Mathematics and Statistics, Wichita State University, Wichita, Kansas 67208