Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Oscillatory behavior of orthogonal polynomials


Authors: Attila Máté, Paul Nevai and Vilmos Totik
Journal: Proc. Amer. Math. Soc. 96 (1986), 261-268
MSC: Primary 42C05
DOI: https://doi.org/10.1090/S0002-9939-1986-0818456-1
MathSciNet review: 818456
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ d\alpha $ be a positive Borel measure in [-1,1] with $ \alpha ' > 0$ a.e. It is shown that the polynomials $ {p_n}$ orthonormal with respect to this measure oscillate almost everywhere in [-1,1]. A function $ F$ is also described that is a pointwise bound for $ {p_n}$, exceeded only on sets of small measure. It is shown that $ F$ is the best possible.


References [Enhancements On Off] (What's this?)

  • [1] G. Freud, Orthogonal polynomials, Pergamon Press, New York, 1971.
  • [2] Ja. L. Geronimus, Orthogonal polynomials, Two Papers on Special Functions, Amer. Math. Soc. Transl. (2) 108 (1977), 37-130. (The Russian original appeared as an appendix added to the Russian Translation of [14], GIFML, Moscow, 1962.)
  • [3] P. R. Halmos, Measure theory, 2nd printing, Springer-Verlag, New York and Berlin, 1974.
  • [4] A. Máté and P. Nevai, Remarks on E. A. Rahmanov's paper "On the asymptotics of the ratio of orthogonal polynomials", J. Approx. Theory 36 (1982), 64-72. MR 673857 (83m:42017)
  • [5] A. Máté, P. Nevai and V. Totik, Asymptotics for the ratio of leading coefficients of orthonormal polynomials on the unit circle, Constructive Approx. 1 (1985), 63-69. MR 766095 (85j:42045)
  • [6] -, Strong and weak convergence of orthogonal polynomials, manuscript.
  • [7] -, Necessary conditions for the weighted mean convergence of Fourier series in orthogonal polynomials, J. Approx. Theory (to appear). MR 840398 (87j:42074)
  • [8] P. Nevai, Orthogonal polynomials, Mem. Amer. Math. Soc. No. 213 (1979). MR 519926 (80k:42025)
  • [9] -, Orthogonal polynomials defined by a recurrence relation, Trans. Amer. Math. Soc. 250 (1979), 369-384. MR 530062 (80d:42011)
  • [10] -, On orthogonal polynomials, J. Approx. Theory 25 (1979), 34-37.
  • [11] E. A. Rahmanov, On the asymptotics of the ratio of orthogonal polynomials, Math. USSR-Sb. 32 (1977), 199-213. (Russian original: Mat. Sb. 103 (1977), 237-252.) MR 0445212 (56:3556)
  • [12] -, On the asymptotics of the ratio of orthogonal polynomials. II, Math. USSR-Sb. 46 (1983), 105-117. (Russian original: Mat. Sb. 118 (1982), 104-117.)
  • [13] G. Pólya and G. Szegö, Problems and theorems in analysis. I, Springer-Verlag, New York and Berlin, 1972.
  • [14] G. Szegö, Orthogonal polynomials, 4th ed., Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, R. I., 1975.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42C05

Retrieve articles in all journals with MSC: 42C05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1986-0818456-1
Keywords: Orthogonal polynomials, Szegö's theory, weak convergence, mean convergence
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society