A finitely additive generalization of Birkhoff's ergodic theorem

Author:
S. Ramakrishnan

Journal:
Proc. Amer. Math. Soc. **96** (1986), 299-305

MSC:
Primary 28D05; Secondary 60F15

DOI:
https://doi.org/10.1090/S0002-9939-1986-0818462-7

MathSciNet review:
818462

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A finitely additive generalization of Birkhoff s ergodic theorem is obtained which yields, in particular, strong laws of large numbers in the i.i.d. setting as well as for positive recurrent Markov chains.

**[1]**R. Chen,*A finitely additive version of Kolmogorov's law of iterated logarithm*, Israel J. Math.**23**(1976), 209-220. MR**0407947 (53:11714)****[2]**-,*Some finitely additive versions of the strong law of large numbers*, Israel J. Math.**24**(1976), 244-259. MR**0418203 (54:6244)****[3]**L. E. Dubins and L. J. Savage,*How to gamble if you must: Inequalities for stochastic processes*, McGraw-Hill, New York, 1965. MR**0236983 (38:5276)****[4]**L. E. Dubins,*On Lebesgue-like extensions of finitely additive measures*, Ann. Probab.**2**(1974), 456-463. MR**0357724 (50:10192)****[5]**N. Dunford and J. T. Schwartz,*Linear operators*, Part I, Interscience, New York, 1958.**[6]**T. Kamae,*A simple proof of the ergodic theorem using nonstandard analysis*, Israel J. Math.**42**(1982), 284-290. MR**682311 (84i:28019)****[7]**Y. Katznelson and B. Weiss,*A simple proof of some ergodic theorems*, Israel J. Math.**42**(1982), 291-296. MR**682312 (84i:28020)****[8]**D. Ornstein and B. Weiss,*The Shannon-McMillan-Breiman theorem for a class of amenable groups*, Israel J. Math.**44**(1983), 53-60. MR**693654 (85f:28018)****[9]**R. A. Purves and W. D. Sudderth,*Some finitely additive probability*, Univ. of Minnesota School of Statistics Tech. Report No. 220, 1973.**[10]**-,*Some finitely additive probability*, Ann. Probab.**4**(1976), 259-276. MR**0402888 (53:6702)****[11]**-,*Finitely additive zero-one laws*, Sankhya**45A**(1983), 32-37. MR**749351 (85j:60057)****[12]**S. Ramakrishnan,*Finitely additive Markov chains*, Trans. Amer. Math. Soc.**265**(1981), 247-272. MR**607119 (82i:60121)****[13]**-,*Potential theory for finitely additive Markov chains*, Stochastic Process. Appl.**16**(1984), 287-303. MR**723850 (86c:60110)****[14]**-,*Central limits theorems in a finitely additive setting*, Illinois J. Math.**28**(1984), 139-161. MR**730717 (85j:60004)****[15]**-,*The tail**-field of a finitely additive Markov chain starting from a recurrent state*, Proc. Amer. Math. Soc.**89**(1983), 493-497. MR**715873 (85a:60039)****[16]**P. C. Shields,*A simple direct proof of Birkhoff's ergodic theorem*, 1982 (unpublished).

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
28D05,
60F15

Retrieve articles in all journals with MSC: 28D05, 60F15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1986-0818462-7

Keywords:
Ergodic theorem,
finitely additive probability,
i.i.d. measure,
Markov chain

Article copyright:
© Copyright 1986
American Mathematical Society