Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On linking coefficients

Author: Nathan Habegger
Journal: Proc. Amer. Math. Soc. 96 (1986), 353-359
MSC: Primary 57Q45
MathSciNet review: 818471
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The possible values of linking coefficients for two component links are studied. An example of a link $ {S^3} \cup {S^2}$ in $ {S^5}$ having linking coefficient in $ {\pi _3}({S^2})$ of Hopf invariant two is constructed. A generalization to links $ {S^{m - 2}} \cup {S^p}$ in $ {S^m}$ is obtained in the metastable range. Applications to embeddings of two cell complexes are cited.

References [Enhancements On Off] (What's this?)

  • [C] George E. Cooke, Embedding certain complexes up to homotopy type in Euclidean space, Ann. of Math. (2) 90 (1969), 144-156. MR 0242152 (39:3486)
  • [F] Roger Fenn, Some generalizations of the Borsuk-Ulam theorem and applications to realizing homotopy classes by embedded spheres, Proc. Cambridge Philos. Soc. 74 (1973), 251-256. MR 0334230 (48:12549)
  • [H] A. Haefliger, Enlacements de sphères en codimension supérieure à 2, Comment. Math. Helv. 4 (1966-67), 51-72. MR 0212818 (35:3683)
  • [Ha] N. Habegger, On the existence and classification of homotopy embeddings of a complex into a manifold, Thesis, Univ. of Geneva, 1981.
  • [Hac] D. Hacon, Embeddings of $ {S^p}$ in $ {S^1} \times {S^q}$ in the metastable range, Topology 7 (1968), 1-10. MR 0222903 (36:5953)
  • [K] M. Kervaire, An interpretation of G. Whitehead's generalization of H. Hopf's invariant, Ann. of Math. (2) 69 (1959), 345-365. MR 0102809 (21:1595)
  • [Ke] C. Kearton, Obstructions to embedding and isolopy in the metastable range, Math. Ann. 243 (1979), 103-113. MR 543720 (82k:57012)
  • [T] R. Thom, Espaces fibrés en sphères et carrés de Steenrod, Ann. Sci. École Norm. Sup. (4) 69 (1952), 109-182. MR 0054960 (14:1004c)
  • [W] G. Whitehead, Elements of homotopy theory, Grad. Texts in Math., Springer-Verlag, Berlin and New York. MR 516508 (80b:55001)
  • [Z] E. C. Zeeman, Unknotting combinatorial balls, Ann. of Math. (2) 78 (1963), 501-526. MR 0160218 (28:3432)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57Q45

Retrieve articles in all journals with MSC: 57Q45

Additional Information

Keywords: Links, linking coefficients, Hopf invariant, cell complexes, embeddings, knots
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society