Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Remarks on Pettis integrability

Author: R. Huff
Journal: Proc. Amer. Math. Soc. 96 (1986), 402-404
MSC: Primary 46G10; Secondary 28B05
MathSciNet review: 822428
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Characterizations of Pettis integrability, including the Geitz-Talagrand core theorem, are derived in an easy way.

References [Enhancements On Off] (What's this?)

  • [1] N. Dunford and J. T. Schwartz, Linear operators. Part I: General theory, Interscience, New York, 1967. MR 1009162 (90g:47001a)
  • [2] D. M. Fremlin and M. Talagrand, A decomposition for additive set-functions, with applications to Pettis integrals and ergodic means, Math. Z. 168 (1979), 117-142. MR 544700 (80k:28004)
  • [3] R. F. Geitz, Pettis integration, Proc. Amer. Math. Soc. 82 (1981), 81-86. MR 603606 (82c:28018)
  • [4] -, Geometry and the Pettis integral, Trans. Amer. Math. Soc. 269 (1982), 535-548. MR 637707 (83d:28004)
  • [5] F. D. Sentilles and R. F. Wheeler, Pettis integration via the Stonian transform, Pacific J. Math. 107 (1983), 473-496. MR 705760 (85c:28006)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46G10, 28B05

Retrieve articles in all journals with MSC: 46G10, 28B05

Additional Information

Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society