Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Uniformly persistent systems


Authors: Geoffrey Butler, H. I. Freedman and Paul Waltman
Journal: Proc. Amer. Math. Soc. 96 (1986), 425-430
MSC: Primary 58F25; Secondary 34C15, 92A15
DOI: https://doi.org/10.1090/S0002-9939-1986-0822433-4
MathSciNet review: 822433
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Conditions are given under which weak persistence of a dynamical system with respect to the boundary of a given set implies uniform persistence.


References [Enhancements On Off] (What's this?)

  • [1] N. P. Bhatia and G. P. Szegö, Dynamical systems: Stability theory and applications, Lecture Notes in Math., vol. 35, Springer-Verlag, New York, 1967. MR 0219843 (36:2917)
  • [2] H. I. Freedman, Deterministic mathematical models in population ecology, Marcel Dekker, New York, 1980. MR 586941 (83h:92043)
  • [3] H. I. Freedman and P. Waltman, Persistence in models of three interacting predator-prey populations, Math. Biosci. 68 (1984), 213-231. MR 738903 (85h:92037)
  • [4] -, Persistence in a model of three competitive populations, Math. Biosci. 73 (1985), 89-101. MR 779763 (86i:92038)
  • [5] T. C. Gard, Persistence in food chains with general interactions, Math. Biosci. 51 (1980), 165-174. MR 605583 (82d:92022)
  • [6] -, Top predator persistence in differential equations models of food chains: The effects of omnivory and external forcing of lower trophic levels, J. Math. Biol. 14 (1982), 285-299. MR 666805 (84b:92046)
  • [7] T. C. Gard and T. G. Hallam, Persistence in food webs. I: Lotka-Volterra food chains, Bull. Math. Biol. 41 (1979), 877-891. MR 640001 (83d:92087)
  • [8] J. Hale and A. Somolinos, Competition for a fluctuating nutrient, J. Math. Biol. 18 (1983), 255-280. MR 729974 (85e:92016)
  • [9] M. W. Hirsch and C. Pugh, Stable manifolds and hyperbolic sets, Global Analysis, Proc. Sympos. Pure Math., vol. 14, Amer. Math. Soc., Providence, R.I., 1970, pp. 133-165. MR 0271991 (42:6872)
  • [10] J. Hofbauer, General cooperation theorem for hypercycles, Monatsh. Math. 91 (1981), 233-240. MR 619966 (82j:34026)
  • [11] S. B. Hsu, S. P. Hubbell and P. Waltman, Competing predators, SIAM J. Appl. Math. 35 (1978), 617-625. MR 512172 (80a:92047)
  • [12] V. Hutson and G. T. Vickers, A criterion for permanent coexistence of species, with an application to a two-prey one-predator system, Math. Biosci. 63 (1983), 253-269. MR 695730 (84i:92077)
  • [13] R. M. May and W. J. Leonard, Nonlinear aspects of competition between three species, SIAM J. Appl. Math. 29 (1975), 243-253. MR 0392035 (52:12853)
  • [14] Z. Nitecki, Differentiable dynamics, MIT Press, Cambridge, Mass., 1971. MR 0649788 (58:31210)
  • [15] P. Schuster, K. Sigmund and R. Wolff, On $ \omega $-limits for competition between three species, SIAM J. Appl. Math. 37 (1979), 49-54. MR 536302 (80g:92029)
  • [16] S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747-817. MR 0228014 (37:3598)
  • [17] G. T. Whyburn, Analytic topology, Amer. Math. Soc. Colloq. Publ., vol. 28, Amer. Math. Soc., Providence, R.I., 1942. MR 0007095 (4:86b)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 58F25, 34C15, 92A15

Retrieve articles in all journals with MSC: 58F25, 34C15, 92A15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1986-0822433-4
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society