The maximum modulus principle for CR functions

Author:
Andrei Iordan

Journal:
Proc. Amer. Math. Soc. **96** (1986), 465-469

MSC:
Primary 32F25

MathSciNet review:
822441

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a CR submanifold of without extreme points. Then, the modulus of any CR function on cannot have a strong local maximum at any point of .

**[1]**M. S. Baouendi and F. Trèves,*A property of the functions and distributions annihilated by a locally integrable system of complex vector fields*, Ann. of Math. (2)**113**(1981), no. 2, 387–421. MR**607899**, 10.2307/2006990**[2]**Richard F. Basener,*Nonlinear Cauchy-Riemann equations and 𝑞-pseudoconvexity*, Duke Math. J.**43**(1976), no. 1, 203–213. MR**0402120****[3]**Eric Bedford,*(∂∂)_{𝑏} and the real parts of CR functions*, Indiana Univ. Math. J.**29**(1980), no. 3, 333–340. MR**570684**, 10.1512/iumj.1980.29.29024**[4]**David Ellis, C. Denson Hill, and Chester C. Seabury,*The maximum modulus principle. I. Necessary conditions*, Indiana Univ. Math. J.**25**(1976), no. 7, 709–715. MR**0590086****[5]**F. Reese Harvey and R. O. Wells Jr.,*Holomorphic approximation and hyperfunction theory on a 𝐶¹ totally real submanifold of a complex manifold*, Math. Ann.**197**(1972), 287–318. MR**0310278****[6]**Hugo Rossi,*Holomorphically convex sets in several complex variables*, Ann. of Math. (2)**74**(1961), 470–493. MR**0133479****[7]**R. O. Wells Jr.,*Holomorphic hulls and holomorphic convexity of differentiable submanifolds*, Trans. Amer. Math. Soc.**132**(1968), 245–262. MR**0222340**, 10.1090/S0002-9947-1968-0222340-8

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
32F25

Retrieve articles in all journals with MSC: 32F25

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1986-0822441-3

Article copyright:
© Copyright 1986
American Mathematical Society