Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A note on completely metrizable spaces


Author: E. Michael
Journal: Proc. Amer. Math. Soc. 96 (1986), 513-522
MSC: Primary 54E50; Secondary 54C10
DOI: https://doi.org/10.1090/S0002-9939-1986-0822451-6
Correction: Proc. Amer. Math. Soc. 100 (1987), 204.
MathSciNet review: 822451
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Completely metrizable spaces are characterized by means of certain not necessarily open covers, and some applications are given to the preservation of complete metrizability under mappings.


References [Enhancements On Off] (What's this?)

  • [A] P. Alexandrov, Sur les ensembles de la première classe et les espaces abstraits, C. R. Acad. Sci. Paris Sér. I. Math. 178 (1924), 185-187.
  • [Ar] A. V. Arhangel'skiĭ, On topological spaces complete in the sense of Čech, Vestnik Moskov. Univ. Ser. I. Mat. Mekh. 2 (1961), 37-40. (Russian) MR 0131258 (24:A1110)
  • [CČN] J. Chaber, M. M. Čoban and K. Nagami, On monotone generalizations of Moore spaces, Čech complete spaces and $ p$$ p$, Fund. Math. 84 (1974), 107-119. MR 0343244 (49:7988)
  • [F] Z. Frolík, Generalizations of the $ {G_\delta }$-property of complete metric spaces, Czechoslovak Math. J. 10 (1960), 359-379. MR 0116305 (22:7100)
  • [GM] N. Ghoussoub and B. Maurey, $ {G_\delta }$-embeddings in Hilbert space, J. Funct. Anal. 61 (1985), 72-97. MR 779739 (86m:46016)
  • [H$ _{1}$] F. Hausdorff, Die Mengen $ {G_\delta }$ in vollständigen Räumen, Fund. Math. 6 (1924), 146-148.
  • [H$ _{2}$] -, Über innere Abbildungen, Fund. Math. 23 (1934), 279-291.
  • [K] K. Kuratowski, Topology, vol. 1, Academic Press, New York, 1966. MR 0217751 (36:840)
  • [M] E. Michael, Complete spaces and tri-quotient maps, Illinois J. Math. 21 (1977), 716-733. MR 0467688 (57:7543)
  • [Mo] D. Montgomery, Non-separable metric spaces, Fund. Math. 25 (1935), 527-533.
  • [T] F. Topsøe, Topological games and Čech completeness, Proc. Fifth Prague Topological Symposium, 1981, Sigma Series in Pure Math., vol. 3, Heldermann, Berlin, 1982. pp. 613-630.
  • [W] H. H. Wicke, Open continuous images of certain kinds of $ M$-spaces and completeness of mappings and spaces, General Topology Appl. 1 (1971), 85-100. MR 0282348 (43:8060)
  • [We] N. Wedenissoff, Sur les espaces metriques complets, J. Math. Pures Appl. (9) 9 (1930), 377-381.
  • [WW] H. H. Wicke and J. M. Worrell, Jr., On the open continuous images of paracompact Čech complete spaces, Pacific J. Math. 37 (1971), 265-276. MR 0307173 (46:6294)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54E50, 54C10

Retrieve articles in all journals with MSC: 54E50, 54C10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1986-0822451-6
Keywords: Completely metrizable, complete, exhaustive, sieve, topological game
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society