Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



The moments of certain complex potentials

Authors: Howard D. Fegan and Peter B. Gilkey
Journal: Proc. Amer. Math. Soc. 96 (1986), 525-527
MSC: Primary 58G25; Secondary 58G11
MathSciNet review: 822453
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ M$ be a compact homogeneous space, let $ \Delta $ be the Laplacian, and let $ V$ be the vector space of Fegan potentials. If $ q \in V$, then $ \Delta $ and $ \Delta + q$ have the same spectrum. We show that all the moments of such a potential must vanish.

References [Enhancements On Off] (What's this?)

  • [1] P. Gilkey, Recursion relations and the asymptotic behavior of the eigenvalues of the Laplacian, Compositio Math. 38 (1979), 201-240. MR 528840 (80i:53020)
  • [2] V. Guillemin and A. Uribe, Spectral properties of a certain class of complex potentials, Trans. Amer. Math. Soc. 279 (1983), 759-771. MR 709582 (84j:58129)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 58G25, 58G11

Retrieve articles in all journals with MSC: 58G25, 58G11

Additional Information

Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society