AN OPERATOR APPROACH TO THE PRINCIPLE OF INCLUSION AND EXCLUSION

C. J. LIU

ABSTRACT. Using an operator approach we derive Sylvester-Whitworth formulae for sets A's. By the same token we treat the problem where both sets of A's and B's are involved. Our result extends the Sylvester-Whitworth inclusion and exclusion formula to the resolution of the number of elements in exactly m_1 sets of A's and m_2 sets of B's respectively. The formula are applied to the complete graph and complete bipartite graph. The enumeration of spanning subgraphs with any preassigned number of disconnected cycles is solved, together with the case where any preassigned number of vertices have degree one.

1. Introduction. Recently, Chow and the present author introduced an operator approach to some enumeration problems in a series of articles [1, 2, 3, 4]. The general idea is as follows. First, one constructs a vector space of formal sums on which some operators are defined. Then a real-valued linear function on the formal vector space is introduced. This linear function plays an important role in the whole approach. Whether the operator method is applicable to a particular problem depends on the successful search for such a function in each case. The problem we studied by this approach are enumerations of forests and matchings of a graph and also that of connected spanning subgraphs with preassigned cyclomatic number (of a planar graph). In this article, we use the operator approach to treat the principle of inclusion and exclusion which has been investigated in the past and most recently in [5, 6, 7]. The vector space of formal sums under consideration is defined as in references [1–4], but a different real-valued linear function is now introduced as we are treating a different problem here. First, we derive Sylvester-Whitworth formulae for sets of A's. Next, using the same formalism, we treat the problem where both sets of A's and B's are involved. Our result extends the Sylvester-Whitworth inclusion and exclusion formula to the resolution of the number of elements in exactly m_1 sets of A's and m_2 sets of B's respectively. Finally, we apply the resulting formulae to the complete graph and complete bipartite graph. The enumeration of spanning subgraphs with any preassigned number of disconnected cycles is solved, together with the case where any preassigned number of vertices have degree one.

It is a pleasure to thank the referee for his valuable suggestions which resulted in an improvement of the manuscript.

2. Main theorems. Let $R = \{1, \ldots, n, \ldots, r\}$ be a set and $P(R)$ be the power set of R, i.e., the collection of all subsets in R. Construct the vector space U of
the formal sums generated by $\mathcal{P}(\mathbb{R})$. The linear "creation" operator is defined by

$$\lambda_i : Q \mapsto \begin{cases} Q \cup \{i\}, & \text{if } i \notin Q, \\ 0, & \text{otherwise,} \end{cases}$$

where $Q \subseteq \mathbb{R}$ and the 0 in (1) is the zero formal sum in \mathcal{U}.

Let $A_1, \ldots, A_n, \ldots, A_r$ be r sets in the universe \mathcal{U}. Denote by $A_i A_j \cdots A_k$ the intersection $A_i \cap A_j \cap \cdots \cap A_k$. Denote by $N(A_i A_j \cdots A_k)$ the number of elements in $A_i A_j \cdots A_k$. Next, we define a linear function μ on the space \mathcal{U} by

$$\mu : Q \mapsto N(A_Q), \quad A_Q = \prod_{i \in Q} A_i.$$

It follows from (1) and (2) that

$$\lambda_i \lambda_j = \lambda_j \lambda_i, \quad \lambda_i^2 = 0, \ldots, \quad i, j \in \mathbb{R}$$

and

$$N(A_{Q \cup \{i\}}) = N(A_Q A_i), \quad \text{if } i \notin Q.$$

Lemma 1. Let S be a subset of \mathbb{R} and $S \cap \{1, \ldots, n\} = \emptyset$. Then

$$\mu \left[\prod_{i=1}^{n+1} (1 - \lambda_i) \right] = N(A_S \overline{A}_1 \cdots \overline{A}_n)$$

where \overline{A}_i is the complement of A_i.

Proof. Use mathematical induction on n.

$$\mu \left[\prod_{i=1}^{n+1} (1 - \lambda_i) \right] = \mu \left[\prod_{i=1}^{n} (1 - \lambda_i) \right] - \mu \left[\prod_{i=1}^{n} (1 - \lambda_i) \cup \{n+1\} \right]$$

$$= N(A_S \overline{A}_1 \cdots \overline{A}_n) - N(A_S A_{n+1} \overline{A}_1 \cdots \overline{A}_n)$$

$$= N(A_S \overline{A}_1 \cdots \overline{A}_{n+1}).$$

The last step follows from the inclusion and exclusion argument.

Lemma 2. Let S be a subset of \mathbb{R} and $S \cap \{1, \ldots, n\} = \emptyset$. Then

$$N_m(A_S) = \mu \left[\prod_{i=1}^{n} (1 - \lambda_i) \frac{1}{m!} \lambda^m S \right], \quad 0 \leq m \leq n,$$

where

$$N_m(A_S) = \sum_{i_1 < \cdots < i_m} N(A_S A_{i_1} \cdots A_{i_m} \overline{A}_{j_1} \cdots \overline{A}_{j_{n-m}}),$$

$$\{i_1, \ldots, i_m\} \cap \{j_1, \ldots, j_{n-m}\} = \emptyset,$$

$$\{i_1, \ldots, i_m\} \cup \{j_1, \ldots, j_{n-m}\} = \{1, \ldots, n\}$$

and

$$\lambda = \lambda_1 + \cdots + \lambda_n.$$
PROOF. It follows from (3) that
\begin{equation}
\frac{1}{m!} \lambda^m = \sum_{i_1 < \cdots < i_m} \lambda_{i_1} \cdots \lambda_{i_m}
\end{equation}
and
\begin{equation}
\prod_{i=1}^{n} (1 - \lambda_i) \frac{1}{m!} \lambda^m = \sum_{i_1 < \cdots < i_m} \prod_{j \neq i_1, \ldots, i_m} (1 - \lambda_j) \lambda_{i_1} \cdots \lambda_{i_m}.
\end{equation}
Hence
\begin{equation}
\mu \left[\prod_{i=1}^{n} (1 - \lambda_i) \frac{1}{m!} \lambda^m S \right] = \sum_{i_1 < \cdots < i_m} \mu \left[\prod_{j \neq i_1, \ldots, i_m} (1 - \lambda_j) S \cup \{i_1, \ldots, i_m\} \right].
\end{equation}
Then Lemma 1 completes the proof.

THEOREM 1. Let A_1, \ldots, A_r be r sets in a universe \mathcal{U}. Let S be a subset of \mathbb{R}, $\mathbb{R} = \{1, \ldots, n, \ldots, r\}$, and $S \cap \{1, \ldots, n\} = \emptyset$. Denote by $W_m(A_S)$ the number of the sizes of all m-tuple intersections of A_S and $A_i's$, $i = 1, \ldots, n$. Then the number of elements in exactly m of $A_i A_S$, $N_m(A_S)$, is given by
\begin{equation}
N_m(A_S) = \sum_{k=0}^{n-m} (-1)^k \binom{m+k}{m} W_{m+k}(A_S), \quad 0 \leq m \leq n,
\end{equation}
which is the Sylvester-Whitworth inclusion and exclusion formula.

PROOF. By (3) it is readily seen that
\begin{equation}
1 - \lambda_i = e^{-\lambda_i}
\end{equation}
and
\begin{equation}
\prod_{i=1}^{n} (1 - \lambda_i) = e^{-\lambda}.
\end{equation}
Then Lemma 2 yields
\begin{equation}
N_m(A_S) = \mu \left[\frac{1}{m!} \lambda^m e^{-\lambda} S \right].
\end{equation}
By definition, one reads
\begin{equation}
\mu \left[\frac{1}{m!} \lambda^m S \right] = \sum_{i_1 < \cdots < i_m} N(A_S A_{i_1} \cdots A_{i_m}) = W_m(A_S).
\end{equation}
The relations of (18) and (19) lead to (15).

REMARKS. (i) It follows from (18) and (19) that
\begin{equation}
W_m(A_S) = \mu \left[\left(\frac{1}{m!} \lambda^m e^{\lambda} \right) e^{-\lambda} S \right]
\end{equation}
\begin{equation}
= \sum_{k=0}^{n-m} \frac{1}{k! m!} \mu[\lambda^{m+k} e^{-\lambda} S]
\end{equation}
\begin{equation}
= \sum_{k=0}^{n-m} \binom{m+k}{m} N_{m+k}(A_S)
\end{equation}
which can also be established by combinatorial analysis [8].

(ii) The operator approach used here has certain similarity to the symbolic method [5]. However, they are not identical since every term in the operator approach can be identified while the symbolic method fails to do so.

Next, we use the same formalism to generalize the Sylvester-Whitworth formula which provides the resolution to the number of elements in \(m_1 \) sets of \(A \)'s and in \(m_2 \) sets of \(B \)'s (both \(A \)'s and \(B \)'s are sets in the universe \(U \)). To do this, we proceed as follows. Let \(R_k = \{1, \ldots, n_k, \ldots, r_k\} \), \(k = 1, 2 \). Denote by \(P(R_1 \times R_2) \) the power set of the Cartesian product \(R_1 \times R_2 \). Construct the vector space \(U^2 \) of the formal sums generated by \(P(R_1 \times R_2) \) with real coefficients. The linear operators \(\lambda_i^{(k)} \), \(k = 1, 2 \), are defined by

\[
\lambda_i^{(k)} : (Q_1, Q_2) \mapsto \begin{cases} (Q_1 \cup \{i\}, Q_2), & \text{if } k = 1 \text{ and } i \notin Q_1, \\ (Q_1, Q_2 \cup \{i\}), & \text{if } k = 2 \text{ and } i \notin Q_2, \\ 0, & \text{otherwise}, \end{cases}
\]

where \(Q_k \subseteq R_k \), \(k = 1, 2 \), and 0 in (21) is the zero formal sum in \(U^2 \).

It follows from (21)

\[
\lambda_i^{(k)} \lambda_j^{(k)} = \lambda_j^{(k)} \lambda_i^{(k)}, \quad \lambda_i^{(k)} \lambda_i^{(k)} = 0, \quad k = 1, 2,
\]

and

\[
\lambda_i^{(1)} \lambda_j^{(2)} = \lambda_j^{(2)} \lambda_i^{(1)}.
\]

Let \(A_1, \ldots, A_{n_1}, \ldots, A_{r_1}, B_1, \ldots, B_{n_2}, \ldots, B_{r_2} \) be \((r_1 + r_2) \) sets in the universe \(U \). Define a linear function \(\mu \) on the space \(U^2 \) by

\[
\mu : (Q_1, Q_2) \mapsto N(A_{Q_1} B_{Q_2})
\]

where

\[
A_{Q_1} = \prod_{i \in Q_1} A_i \quad \text{and} \quad B_{Q_2} = \prod_{i \in Q_2} B_i.
\]

It is readily seen that

\[
N(A_{Q_1 \cup \{i\}} B_{Q_2 \cup \{j\}}) = N(A_{Q_1} B_{Q_2} A_i B_j),
\]

provided \(i \in R_1 \), \(i \notin Q_1 \), \(j \in R_2 \), \(j \notin Q_2 \).

The following result can be established easily by the same argument used in the proof of Lemma 1.

Lemma 3. Let \(S_k \) be a subset of \(R_k \) and \(S_k \cap \{1, \ldots, n_k\} = \emptyset \), \(k = 1, 2 \). Then

\[
\mu \left(\prod_{k=1}^{2} \prod_{i=1}^{n_k} (1 - \lambda_i^{(k)})(S_1, S_2) \right) = N \left(A_{S_1} B_{S_2} \prod_{i=1}^{n_1} \prod_{j=1}^{n_2} A_i B_j \right).
\]

Lemma 4. Let \(S_k \) be a subset of \(R_k \) and \(S_k \cap \{1, \ldots, n_k\} = \emptyset \), \(k = 1, 2 \). Then

\[
N_{m_1, m_2}(A_{S_1} B_{S_2}) = \mu \left(\prod_{k=1}^{2} \prod_{i=1}^{n_k} \frac{1}{m_k^i} (1 - \lambda_i^{(k)})(\lambda^{(k)})^{m_k^i}(S_1, S_2) \right)
\]

where

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
(29) \[N_{m_1, m_2}(A_{S_1} B_{S_2}) \]
\[= \sum_{i_1 < \cdots < i_{m_1}} \sum_{j_1 < \cdots < j_{m_2}} N(A_{S_1} B_{S_2} A_{i_1} \cdots A_{i_{m_1}} B_{j_1} \cdots B_{j_{m_2}}) \]
\[\cdots B_{j_{m_2}} A_{k_1} \cdots A_{k_{n_1-m_1}} B_{l_1} \cdots B_{l_{n_2-m_2}} \),

(30) \(\{i_1, \ldots, i_{m_1}\} \cap \{k_1, \ldots, k_{n_1-m_1}\} = \emptyset \),

(31) \(\{i_1, \ldots, i_{m_1}\} \cup \{k_1, \ldots, k_{n_1-m_1}\} = \{1, \ldots, n_1\}, \) etc.

and

(32) \(\lambda^{(k)} = \lambda^{(k)}_1 + \cdots + \lambda^{(k)}_{n_k}, \quad k = 1, 2. \)

PROOF. It follows from (22) and (23)

(33) \[\frac{1}{m_k!} (\lambda^{(k)})^{m_k} = \sum_{i_1 < \cdots < i_{m_1}} \lambda^{(k)}_{i_1} \cdots \lambda^{(k)}_{i_{m_1}}, \quad k = 1, 2. \]

Hence

(34) \[\mu \left[\prod_{k=1}^{2} \prod_{l=1}^{n_k} \frac{1}{m_k!} (1 - \lambda^{(k)}_l)^{(\lambda^{(k)})^{m_k}}(S_1, S_2) \right] \]
\[= \sum_{i_1 < \cdots < i_{m_1}} \sum_{j_1 < \cdots < j_{m_2}} \mu \left[\prod_{i \neq i_1, \ldots, i_{m_1}} \prod_{j \neq j_1, \ldots, j_{m_2}} (1 - \lambda^{(1)}_i) \right.
\[\cdot (1 - \lambda^{(2)}_j) \lambda^{(1)}_{i_1} \cdots \lambda^{(1)}_{i_{m_1}} \lambda^{(2)}_{j_1} \cdots \lambda^{(2)}_{j_{m_2}} (S_1, S_2) \]
\[= \sum_{i_1 < \cdots < i_{m_1}} \sum_{j_1 < \cdots < j_{m_2}} \mu \left[\prod_{i \neq i_1, \ldots, i_{m_1}} \prod_{j \neq j_1, \ldots, j_{m_2}} (1 - \lambda^{(1)}_i) \right.
\[\cdot (1 - \lambda^{(2)}_j) (S_1 \cup \{i_1, \ldots, i_{m_1}\}, S_2 \cup \{j_1, \ldots, j_{m_2}\}) \right]. \]

Lemma 3 completes the proof.

THEOREM 2. Let \(A_1, \ldots, A_{n_1}, \ldots, A_{r_1}, B_1, \ldots, B_{n_2}, \ldots, B_{r_2} \) be \((r_1 + r_2)\) sets in a universe \(\mathcal{U} \). Let \(S_k \) be a subset of \(\mathcal{R}_k \) with \(\mathcal{R}_k = \{1, \ldots, n_k, \ldots, r_k\} \) and \(S_k \cap \{1, \ldots, n_k\} = \emptyset, \) \(k = 1, 2. \) Then

(35) \[N_{m_1, m_2}(A_{S_1} B_{S_2}) = \sum_{k_1=0}^{n_1-m_1} \sum_{k_2=0}^{n_2-m_2} (-1)^{k_1+k_2} (m_1 + k_1) \binom{m_1}{m_1} (m_2 + k_2) \binom{m_2}{m_2} \]
\[\cdot W_{m_1+k_1, m_2+k_2}(A_{S_1} B_{S_2}), \]
where

\[(36) \quad W_{m_1,m_2}(A_{s_1}B_{s_2}) = \sum_{i_1 < \ldots < i_{m_1}} \sum_{j_1 < \ldots < j_{m_2}} N(A_{s_1}B_{s_2}A_{i_1} \cdots A_{i_{m_1}}B_{j_1} \cdots B_{j_{m_2}})\]

and \(N_{m_1,m_2}(A_{s_1}B_{s_2})\) is the number of elements in exactly \(m_1\) of \(A_iA_{s_1}, i = 1, \ldots, n_1,\) and \(m_2\) of \(B_jB_{s_2}, j = 1, \ldots, n_2,\) respectively.

Proof. By (22) and (23) one finds

\[(37) \quad \prod_{k=1}^{n_k}(1 - \lambda_i^{(k)}) = e^{-\lambda_i^{(k)}}, \quad k = 1, 2,\]

where \(\lambda_i^{(k)}\) is defined by (32). It follows from Lemma 4

\[(38) \quad N_{m_1,m_2}(A_{s_1}B_{s_2}) = \mu \left[\prod_{k=1}^{2} \frac{1}{m_k!}(\lambda_i^{(k)})^{m_k} e^{-\lambda_i^{(k)}(S_1,S_2)} \right].\]

By definition, we have

\[(39) \quad W_{m_1,m_2}(A_{s_1}B_{s_2}) = \sum_{i_1 < \ldots < i_{m_1}} \sum_{j_1 < \ldots < j_{m_2}} N(A_{s_1}B_{s_2}A_{i_1} \cdots A_{i_{m_1}}B_{j_1} \cdots B_{j_{m_2}}) = W_{m_1,m_2}(A_{s_1}B_{s_2}).\]

The theorem is established by (38) and (39).

3. **Spanning subgraphs with disconnected cycles and vertices of degree one.** For a complete graph \(K_n,\) let \(\rho_d(n)\) be the number of \(d\)-component spanning unicyclic subgraphs with cycle length \(l_1, \ldots, l_d\) respectively. For \(d = 1,\) it is known [9]

\[(40) \quad \rho_1(n) = \frac{1}{2}(n)_l n^{n-l-1}.\]

In fact, (40) can be established easily by considering all spanning subgraphs with a cycle of cycle length \(l\) attaching to a \(l\)-component forests which can be enumerated by the Kirchoff matrix [1, 4, 10], i.e.,

\[(41) \quad \rho_1(n) = \binom{n}{l} \frac{1}{2}(l-1)!(n^{n-l-1}].\]

Using the same arguments, it is readily seen that

\[(42) \quad \rho_d(n) = \frac{l}{2^d} \left(\prod_{i=1}^{d} l_i \right)^{-1} (n)_l n^{n-l-1},\]

where

\[(43) \quad l = l_1 + \cdots + l_d.\]
For a complete bipartite graph K_{n_1,n_2}, let $\rho_d(n_1, n_2)$ be the number of d-component spanning unicyclic subgraphs with cycle length $2l_1, \ldots, 2l_d$ respectively. A straightforward calculation yields

$$\rho_d(n_1, n_2) = \frac{l}{2^d} \left(\prod_{i=1}^{d} l_i \right)^{-1} \left(n_1 + n_2 - l \right) \left(n_1 l_1(n_2)_{l-1}n_1^{n_2-l-1}n_2^{l-1} \right)$$

where

$$l = l_1 + \cdots + l_d.$$

We now consider the application of Theorems 1 and 2. First, we take up the complete graph K_n. Let A_i be the set of spanning subgraphs of K_n with vertex i having degree one. Let A_S be the set of a d-component, $d = \lfloor |S| \rfloor$, spanning unicyclic subgraphs of K_n. It is readily seen that

$$N(A_S A_{i_1} \cdots A_{i_k}) = \prod_{j=1}^{k} \text{(number of edges containing vertex } i_j \text{)} \rho_d(n - k)$$

$$= (n - k)^k \rho_d(n - k).$$

It follows from (20)

$$W_k(A_S) = \binom{n}{k} (n - k)^k \rho_d(n - k).$$

Denote by $N_m^{(n)}(l_1, \ldots, l_d)$ the number of d-component spanning unicyclic subgraphs of K_n with m vertices of degree one and d disconnected cycles each of which have cycle length l_1, \ldots, l_d respectively. Theorem 1 and (47) lead to

$$N_m^{(n)}(l_1, \ldots, l_d) = \frac{n!}{m!} \sum_{k=m}^{n-l} (-1)^{k+m} \frac{(n - k)^k}{(n - k)!((k - m)!)} \rho_d(n - k).$$

It follows from (42)

$$N_m^{(n)}(l_1, \ldots, l_d) = \frac{l}{2^d} \left(\prod_{i=1}^{d} l_i \right)^{-1} \frac{n!}{m!} \sum_{k=0}^{n-l-1} l^k \binom{n - l - 1}{k} \left\{ \binom{n - m - l}{n - m - 1} \right\}$$

where $\{a \choose b\}$ is the Stirling number of the second kind.

Second, we consider the complete bipartite graph K_{n_1,n_2}. Let A_i be the set of spanning subgraphs of K_{n_1,n_2} with vertex i, $i = 1, \ldots, n_1$, having degree one and B_j be the set of spanning subgraphs of K_{n_1,n_2} with vertex j, $j = 1, \ldots, n_2$, having degree one. Let $A_{S_1}B_{S_2}$ be the set of a d-component, $d = \lfloor |S_1| = |S_2| \rfloor$, spanning unicyclic subgraphs of K_{n_1,n_2}. A calculation similar to that of the complete graph K_n yields the following result

$$W_{k_1,k_2}(A_{S_1}B_{S_2}) = \binom{n_1}{k_1} \binom{n_2}{k_2} (n_1 - k_1)^{k_2} (n_2 - k_2)^{k_1} \rho_d(n_1, n_2).$$

Denote by $N_{m_1,m_2}^{(n_1,n_2)}(2l_1, \ldots, 2l_d)$ the number of d-component spanning unicyclic subgraphs of K_{n_1,n_2} with m_1, among n_1, vertices having degree one in one part and m_2, among n_2, vertices having degree one in another part, together with d disconnected cycles each of which have cycle length $2l_1, \ldots, 2l_d$ respectively. Theorem
2 and (50) lead to

\begin{equation}
N_{m_1, m_2}^{(n_1, n_2)}(2l_1, \ldots, 2l_d)
= \frac{n_1!n_2!}{m_1!m_2!} \sum_{k_1=m_1}^{n_1-l} \sum_{k_2=m_2}^{n_2-l} \frac{(n_1 - k_1)^{k_2}(n_2 - k_2)^{k_1}}{(n_1 - k_1)!(n_2 - k_2)!(k_2 - m_2)!}
\cdot (-1)^{k_1 + k_2 + m_1 + m_2} \rho_d(n_1 - k_1, n_2 - k_2).
\end{equation}

Using (44), we have

\begin{equation}
N_{m_1, m_2}^{(n_1, n_2)}(2l_1, \ldots, 2l_d)
= \frac{l}{2^d} \left(\prod_{j=1}^{d} l_i \right)^{-1} \frac{n_1!n_2!}{m_1!m_2!} [D_{m_1}(n_1; n_2; l)D_{m_2}(n_2; n_1 - 1; l)
+ D_{m_1}(n_1; n_2 - 1; l)D_{m_2}(n_2; n_1; l)
- D_{m_1}(n_1; n_2 - 1; l)D_{m_2}(n_2; n_1 - 1; l)]
\end{equation}

and

\[l = l_1 + \cdots + l_d \]

where

\begin{equation}
D_m(a; b; c) = \sum_{k=0}^{b-c} \binom{b-c}{k} \binom{b-c-k}{a-c-m}.
\end{equation}

Remark. The relations of (48) and (51) can also be used in other enumeration problems. For example, let \(\rho_0(n) \) be the number of spanning trees of the complete graph \(K_n \). Denote by \(N^m(n) \) the number of spanning trees of \(K_n \) with \(m \) vertices having degree one. Then

\begin{equation}
N^m(n) = \frac{n!}{m!} \left\{ \begin{array}{c} n - 2 \\ n - m \end{array} \right\}
\end{equation}

is the result of (48). Historically, Rényi obtained (55) from a recurrence relation [11]

\begin{equation}
\frac{m}{n} N^m(n) = (n - m)N^{(n-1)}_{m-1} + mN^{(n-1)}_m.
\end{equation}

Next, let \(\rho_0(n_1, n_2) \) be the number of spanning trees of the complete bipartite graph \(K_{n_1, n_2} \). Denote by \(N_{m_1, m_2}^{(n_1, n_2)} \) the number of spanning trees of \(K_{n_1, n_2} \) with \(m_1 \), among \(n_1 \), vertices having degree one in one part and \(m_2 \), among \(n_2 \), vertices having degree one in another part respectively. It follows from (51)

\begin{equation}
N_{m_1, m_2}^{(n_1, n_2)} = \frac{n_1!n_2!}{m_1!m_2!} \left\{ \begin{array}{c} n_1 - 1 \\ n_2 - m_2 \end{array} \right\} \left\{ \begin{array}{c} n_2 - 1 \\ n_1 - m_1 \end{array} \right\}.
\end{equation}

We announce here (to be published elsewhere) the following result concerning
the case with sets $A_1^{(i)}, \ldots, A_n^{(i)}, \ldots, A_r^{(i)}, i = 1, \ldots, p$, in the universe \mathcal{U}:

$$
N_{m_1, \ldots, m_p} \left(\prod_{j=1}^{p} A_{S_j}^{(j)} \right) = \prod_{i=1}^{p} \left[\sum_{k_i=0}^{n_i-m_i} (-1)^{k_i} \binom{m_i+k_i}{m_i} \right] \cdot W_{m_1+k_1, \ldots, m_p+k_p} \left(\prod_{j=1}^{p} A_{S_j}^{(j)} \right).
$$

We note that (58) is equivalent to Theorem 4 in reference [12].

REFERENCES