Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Counterexample to the spectral mapping theorem for the exponential function


Authors: J. Hejtmanek and Hans G. Kaper
Journal: Proc. Amer. Math. Soc. 96 (1986), 563-568
MSC: Primary 47D05
DOI: https://doi.org/10.1090/S0002-9939-1986-0826482-1
MathSciNet review: 826482
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An example is given of an unbounded operator in a Hilbert space which generates a strongly continuous semigroup and for which the spectral mapping theorem for the exponential function does not hold. The spectra of both the generator and the semigroup are determined explicitly.


References [Enhancements On Off] (What's this?)

  • [J] W. S. Cassels [1957], An introduction to diophantine approximation, Cambridge Tracts in Math. and Math. Phys., no 45, Cambridge Univ. Press, New York. MR 0087708 (19:396h)
  • [E] B. Davies [1980], One-parameter semigroups, London Math. Soc. Monographs, vol. 15, Academic Press, New York. MR 591851 (82i:47060)
  • [N] Dunford and J. T. Schwartz [1958], Linear operators, Interscience, New York.
  • [C] Foias [1973], Sur une question de M. Reghis, An. Univ. Timisoara 11, fasc. 2. MR 0370262 (51:6489)
  • [L] Gearhart [1978], Spectral theory for contraction semigroups on Hilbert spaces, Trans. Amer. Math. Soc. 236, 385-394. MR 0461206 (57:1191)
  • [J] Goldstein [1983], Semigroups of linear operators and applications, Tulane University.
  • [G] Greiner [1982], Asymptotics in linear transport theory, Semesterberichte Funktional-analysis Tübingen, Sommersemester 1982, pp. 71-98.
  • [G] Greiner, J. Voigt and M. Wolff [1981], On the spectral bound of the generator of semigroups of positive operators, J. Operator Theory 5, 245-256. MR 617977 (82h:47039)
  • [I] Herbst [1983], The spectrum of Hilbert space semigroups, J. Operator Theory 10, 87-94. MR 715559 (84m:47052)
  • [E] Hille and R. S. Phillips [1957], Functional analysis and semigroups, Colloq. Publ., vol. 21., Amer. Math. Soc., Providence, R.I. MR 0089373 (19:664d)
  • [N] Hoppen [1985], Examples of semigroups with $ s{\text{ < }}{\omega _0}$ in $ {L^1}$-Banach spaces, Thesis, Institut für Mathematik, Universität Wien.
  • [J] S. Howland [1984], On a theorem of Gearhart, Integral Equations Operator Theory 7, 138-142. MR 802373 (87b:47044)
  • [H] G. Kaper and J. Hejtmanek [1984], Recent advances on the reactor problem, (preprint).
  • [H] G. Kaper, C. G. Lekkerkerker and J. Hejtmanek [1982], Spectral methods in linear transport theory, 0T5, Birkhäuser-Verlag, Basel. MR 685594 (85i:82079)
  • [T] Kato [1966], Perturbation theory for linear operators, Springer-Verlag, New York. MR 0203473 (34:3324)
  • [R] Nagel [1982], Zur Charakterisierung stabiler Operatorenhalbgruppen, Semesterberichte Funktional-analysis Tübingen, Sommersemester 1982, pp. 99-120.
  • [A] Pazy [1983], Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, New York. MR 710486 (85g:47061)
  • [J] Pruess [1984], On the spectrum of $ {C_0}$-semigroups, Trans. Amer. Math. Soc. 284, 847-857. MR 743749 (85f:47044)
  • [M] Reed and B. Simon [1975], Methods of modern mathematical physics, Vol. 2, Academic Press, New York. MR 0493420 (58:12429b)
  • [M] Wolff [1981], A remark on the spectral bound of the generator of a semigroup of positive operators with applications in stability theory, Functional Analysis and Applications, Birkhäuser-Verlag, Basel, pp. 39-50. MR 650263 (83i:47054)
  • [J] Voigt [1984], Positivity in time dependent linear transport theory, Preprint, Fach. Mathematik, Universität Trier. MR 753698 (86h:82065)
  • [J] Zabczyk [1975], A note on $ {C_0}$-semigroups, Bull. Acad. Polon. Sci. 23, 895-898. MR 0383144 (52:4025)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47D05

Retrieve articles in all journals with MSC: 47D05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1986-0826482-1
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society