Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A covering lemma for product spaces

Author: Jean-Lin Journé
Journal: Proc. Amer. Math. Soc. 96 (1986), 593-598
MSC: Primary 42B20
MathSciNet review: 826486
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give a substitute for the Whitney decomposition of an arbitrary open set in $ {{\mathbf{R}}^2}$ where squares are replaced by rectangles. Then we deduce the $ {L^\infty }$-BMO boundedness of certain singular integral operators defined on product spaces.

References [Enhancements On Off] (What's this?)

  • [1] S.-Y. A. Chang, Carleson measure on the bi-disc, Ann. of Math. (2) 109 (1979), 613-620. MR 534766 (80j:32009)
  • [2] S.-Y. A. Chang and R. Fefferman, A continuous version of duality of $ {H^1}$ with BMO on the bi-disc, Ann. of Math. (2) 112 (1980), 179-201. MR 584078 (82a:32009)
  • [3] R. R. Coifman and Y. Meyer, Au delà des opérateurs pseudo-differentiels, Astérisque No. 57, 1978. MR 518170 (81b:47061)
  • [4] R. Fefferman and E. M. Stein, Singular integrals on product spaces, Adv. in Math. 45 (1982), 117-143. MR 664621 (84d:42023)
  • [5] J.-L. Journé, Calderón-Zygmund operators, pseudo-differential operators and the Cauchy integral of Calderón, Lecture Notes in Math., vol. 994, Springer-Verlag, Berlin and New York, 1983.
  • [6] -, Calderón-Zygmund operators on product spaces, Revista Ibero-Americana 3 (1985).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42B20

Retrieve articles in all journals with MSC: 42B20

Additional Information

Keywords: Carleson measures, Whitney decompostion
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society