Coincidence theorem and saddle point theorem

Author:
H. Komiya

Journal:
Proc. Amer. Math. Soc. **96** (1986), 599-602

MSC:
Primary 47H10; Secondary 49A40, 54H25

MathSciNet review:
826487

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We discuss Browder's coincidence theorem and derive a saddle point theorem from it.

**[1]**Felix E. Browder,*The fixed point theory of multi-valued mappings in topological vector spaces*, Math. Ann.**177**(1968), 283–301. MR**0229101****[2]**Felix E. Browder,*Coincidence theorems, minimax theorems, and variational inequalities*, Conference in modern analysis and probability (New Haven, Conn., 1982), Contemp. Math., vol. 26, Amer. Math. Soc., Providence, RI, 1984, pp. 67–80. MR**737389**, 10.1090/conm/026/737389**[3]**Nelson Dunford and Jacob T. Schwartz,*Linear operators. Part I*, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988. General theory; With the assistance of William G. Bade and Robert G. Bartle; Reprint of the 1958 original; A Wiley-Interscience Publication. MR**1009162****[4]**Ky. Fan,*Fixed-point and minimax theorems in locally convex topological linear spaces*, Proc. Nat. Acad. Sci. U. S. A.**38**(1952), 121–126. MR**0047317****[5]**-,*A generalization of Tychonoff's fixed point theorem*, Math. Ann.**142**(1961), 305-310.**[6]**Ky Fan,*Extensions of two fixed point theorems of F. E. Browder*, Math. Z.**112**(1969), 234–240. MR**0251603****[7]**Chung Wei Ha,*Minimax and fixed point theorems*, Math. Ann.**248**(1980), no. 1, 73–77. MR**569411**, 10.1007/BF01349255**[8]**Shizuo Kakutani,*A generalization of Brouwer’s fixed point theorem*, Duke Math. J.**8**(1941), 457–459. MR**0004776****[9]**John L. Kelley and Isaac Namioka,*Linear topological spaces*, Springer-Verlag, New York-Heidelberg, 1976. With the collaboration of W. F. Donoghue, Jr., Kenneth R. Lucas, B. J. Pettis, Ebbe Thue Poulsen, G. Baley Price, Wendy Robertson, W. R. Scott, and Kennan T. Smith; Second corrected printing; Graduate Texts in Mathematics, No. 36. MR**0394084****[10]**S. Simons,*Two-function minimax theorems and variational inequalities for functions on compact and noncompact sets, with some comments on fixed-point theorems*, Nonlinear functional analysis and its applications, Part 2 (Berkeley, Calif., 1983) Proc. Sympos. Pure Math., vol. 45, Amer. Math. Soc., Providence, RI, 1986, pp. 377–392. MR**843623****[11]**Wataru Takahashi,*Nonlinear variational inequalities and fixed point theorems*, J. Math. Soc. Japan**28**(1976), no. 1, 168–181. MR**0399979****[12]**Wataru Takahashi,*Recent results in fixed point theory*, Southeast Asian Bull. Math.**4**(1980), no. 2, 59–85. MR**655748**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
47H10,
49A40,
54H25

Retrieve articles in all journals with MSC: 47H10, 49A40, 54H25

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1986-0826487-0

Keywords:
Coincidence theorem,
saddle point,
fixed point

Article copyright:
© Copyright 1986
American Mathematical Society