ROWBOTTOM-TYPE PROPERTIES
AND A CARDINAL ARITHMETIC

JAN TRYBA

ABSTRACT. Assuming Rowbottom-type properties, we estimate the size of certain families of closed disjoint functions. We show that whenever \(\kappa \) is Rowbottom and \(2^\omega < \aleph_1(\kappa) \), then \(2^\kappa = 2^\omega \) or \(\kappa \) is the strong limit cardinal. Next we notice that every strongly inaccessible Jónsson cardinal \(\kappa \) is \(\mu \)-Rowbottom for some \(\mu < \kappa \). In turn, Shelah's method allows us to construct a Jónsson model of cardinality \(\kappa^+ \) provided \(\kappa^{cf}(\kappa) = \kappa^+ \). We include some additional remarks.

0. Introduction. In this paper the basic set-theoretical notation is standard. We only mention that the letters \(\kappa, \lambda, \mu, \ldots \) are reserved for cardinals. All undefined notions are taken from [3].

By \(j: M \rightarrow V_\gamma \), we mean an elementary embedding of the transitive model \(M \) into the collection of all sets of rank less than the limit ordinal \(\gamma \) which moves some ordinal. We write \((\kappa, \lambda) \rightarrow (\mu, < \nu) \) iff whenever \(f: [\kappa]^\omega \rightarrow \lambda \), there exists a set \(X \subseteq \kappa \) such that \(|X| = \mu \) and \(|f''[X]|^\omega < \nu \). A cardinal \(\kappa > \nu \) is \(\nu \)-Rowbottom iff \((\kappa, \lambda) \rightarrow (\kappa, < \nu) \) for every \(\lambda < \kappa \); \(\kappa \) is Rowbottom just in case it is \(\omega_1 \)-Rowbottom. If \((\kappa, \nu) \rightarrow (\kappa, < \nu) \) for some \(\nu < \kappa \), then \(\kappa \) is called Jónsson.

Background information about a relation between Jónsson cardinals and elementary embeddings can be found in [8]. Mimicking [8] we can in fact prove that the property \((\kappa, \lambda) \rightarrow (\mu, < \nu) \) is equivalent to the existence of an elementary embedding \(j: M \rightarrow V_\gamma \) such that \(j(\delta) = \lambda \) for some \(\delta < \nu \), \(j(\tau) = \kappa \) for some \(\tau \geq \mu \) and \(\mu, \nu \in j''M \) for every \(\gamma > \kappa \) (or equivalently, for some \(\gamma > \kappa \); we may additionally demand that the model \(V_\gamma \) carries countably many relations and operations).

1. Closed disjoint functions. We say that two functions \(f \) and \(g \) on \(\lambda \) are closed disjoint iff the set \(\{ \alpha < \lambda : f(\alpha) \neq g(\alpha) \} \) contains a closed unbounded subset of \(\lambda \).

Proposition 1.1. Assume \(j: M \rightarrow V_\gamma \), \(j(\delta) = \lambda \) for some \(\delta < \lambda \), \(\lambda \) is regular and \(\mu \in M \cap j''M \). Let \(h: \lambda \rightarrow \mu \). Then every family of closed disjoint functions \(f \in \prod_{\alpha < \lambda} h(\alpha) \) has less than \(j(\mu) \) elements.

Proof. Suppose the opposite: there exist a function \(h: \lambda \rightarrow \mu \) and a family of size \(j(\mu) \) of closed disjoint functions \(f \in \prod_{\alpha < \lambda} h(\alpha) \). Let \(j(\tau) = \mu \). By elementarity and absoluteness we find in \(M \) a function \(h: \delta \rightarrow \tau \) and a family \(F \in M \) of size \(\mu \) of closed disjoint-in-\(M \) functions \(f \in \prod_{\alpha < \delta} h(\alpha) \). Put \(\eta = \sup j''(\delta) < \lambda \).

We shall prove that \((j(f))(\eta) \neq (j(g))(\eta) \) for any distinct \(f, g \in F \). Let \(C \subseteq \{ \alpha < \delta : f(\alpha) \neq g(\alpha) \} \) be closed unbounded in \(\delta \) and \(C \in M \). Therefore \(j''C \) is...
unbounded in \(\sup j''\delta = \eta \), \(j(C) \subseteq \{ \alpha < \lambda: (j(f))(\alpha) \neq (j(g))(\alpha) \} \) and \(j(C) \) is closed in \(\lambda \). Since \(j''\delta C \in j(C) \), we have \(\eta \in j(C) \).

Now we derive a contradiction, because

\[
|F| = |\{ (j(f))(\eta): f \in F \}| \leq (j(\bar{h}))(\eta) < \mu. \quad \Box
\]

In the presence of Proposition 1.1 we receive some generalizations of the known results about Chang’s Conjecture or those formulated in [7], for instance.

Corollary 1.2. If \(\lambda \) is a regular cardinal and \((\kappa, \lambda) \rightarrow (\mu, < \lambda)\), then every family of closed disjoint functions \(f: \lambda \rightarrow \eta \), where \(\eta < \mu \), has less than \(\kappa \) members. If in addition \(\text{cf}(\mu) > \lambda \), then every family of closed disjoint functions \(f: \lambda \rightarrow \mu \) has at most \(\kappa \) elements.

In particular, if \(\kappa \) is Rowbottom, then the above statement is true for each regular \(\omega < \lambda < \kappa = \mu \). \(\Box \)

Let \(I \) be an ideal over \(\lambda \). A partial function \(f \) on \(\lambda \) is called an \(I \)-function iff \(\text{dom}(f) \notin I \) (compare [3, p. 432]). Two \(I \)-functions \(f \) and \(g \) on \(\lambda \) are almost disjoint iff the set \(\{ \alpha < \lambda: f(\alpha) = g(\alpha) \} \) has size less than \(\lambda \).

The method of the proof of Proposition 1.1 yields

Proposition 1.3. Assume \(j: M \rightarrow V, j(\delta) = \lambda \) for some \(\delta < \lambda \), \(\lambda \) is regular, \(\lambda < \mu < j''\lambda \) and \(\mu \in M \). Let \(I \) be any ideal over \(\lambda \) containing all bounded subsets of \(\lambda \). Then every family of almost disjoint \(I \)-functions on \(\lambda \) into \(\mu \) has less than \(j(\mu) \) elements.

Proof. Argue by contradiction. Let \(j(\tau) = \mu \). By our assumption there exist an \(M \)-ideal \(I \in M \) over \(\delta \) containing all bounded subsets of \(\delta \) and a family \(F \in M \) of size \(\mu \) of almost disjoint \(I \)-functions on \(\delta \) into \(\tau \). Set \(\eta = \sup j''\delta < \lambda \).

For any distinct \(f, g \in F \) we can choose \(\beta < \delta \) such that \(f(\alpha) \neq g(\alpha) \) for all \(\alpha \in \text{dom}(f) \cap \text{dom}(g) \), \(\alpha \geq \beta \). Thus \((j(f))(\alpha) \neq (j(g))(\alpha) \) for all \(\alpha \in \text{dom}(j(f)) \cap \text{dom}(j(g)) \), \(\alpha \geq \eta > j(\beta) \).

Since all bounded subsets of \(\lambda \) are elements of \(j(I) \), there is a subfamily \(G \subseteq F \) of size \(\mu \) and an ordinal \(\eta \leq \alpha < \lambda \) such that \(\alpha \in \text{dom}(j(f)) \) for all \(f \in G \). However, \(|G| = |\{ (j(f))(\alpha): f \in G \}| < \mu \), which is false. \(\Box \)

Corollary 1.4. If \(j: M \rightarrow V, j(\delta) = \lambda \) for some \(\delta < \lambda \), \(\lambda \) is regular and \(\lambda^+ \in M \), then the ideal \(I = \{ x \subseteq \lambda: |x| < \lambda \} \) of bounded subsets of \(\lambda \) is \(j(\lambda^+) \)-saturated. Hence, the ideal \(I \) is \(\lambda^+ \)-saturated, assuming \((\lambda^+, \lambda) \rightarrow (\lambda^+, < \lambda) \).

Proof. If \(|x| = \lambda \), then the identity restricted to \(x \) is an \(I \)-function. Now apply Proposition 1.3. \(\Box \)

If \(f \) and \(g \) are ordinal-valued functions on a regular cardinal \(\lambda > \omega \), then the symbol \(g < f \) means that the set \(\{ \alpha < \lambda: g(\alpha) < f(\alpha) \} \) contains some closed unbounded subset of \(\lambda \) (compare [3, p. 67]). The relation \(g < f \) is well-founded and the rank \(||f|| = \sup \{|g| + 1: g < f\} \) of \(f \) in this one is called the norm of \(f \). \(||\tau|| \) denotes the norm of the constant function on \(\lambda \) taking \(\tau \) as the only value.

The following result can be deduced indirectly from Shelah’s work [5] using Magidor’s filters.
PROPOSITION 1.5. If \(j: M \to V_\alpha \), \(j(\delta) = \lambda \) for some \(\delta < \lambda \) and \(\lambda \) is regular, then \(\|\tau\| \leq j(\tau) \) for each \(\tau \in M \cap j"M \).

PROOF. Let \(\eta = \sup j"\delta < \lambda \). First of all we want to show that \(\|f\|_M \leq (j(f))(\eta) \) for every ordinal-valued function \(f \in M \) defined on \(\delta \). This is done by simple induction on the norm \(\|f\|_M \). If \(\|f\|_M = \beta + 1 \), then there is some function \(g \in M \) on \(\delta \) such that \(g < f \) and \(\|g\|_M = \beta \leq (j(g))(\eta) \). But the proof of Proposition 1.1 shows that \(g < f \) implies \((j(g))(\eta) < (j(f))(\eta) \) and so \(\|f\|_M = \beta + 1 \leq (j(f))(\eta) \). The case of limit \(\|f\|_M \) is similar.

Presently, if \(\|\tau\| > j(\tau) \) and \(j(\alpha) = \tau \), then there exists a function \(g: \lambda \to \tau \) such that \(\|g\| = j(\alpha) < \tau \) and so in \(M \) there is a function \(f: \delta \to \alpha \) such that \(\|f\|_M = \tau \). But then \(\tau \leq (j(f))(\eta) < j(\alpha) = \tau \), a contradiction.

COROLLARY 1.6. If \(\lambda \) is a regular cardinal and \((\kappa, \lambda) \to (\mu, < \lambda) \), then \(\|\mu\| \leq \kappa \). In particular, Chang’s Conjecture \((\lambda^+, \lambda) \to (\lambda, < \lambda) \) implies \(\|\lambda\| = \lambda^+ \).

2. Cardinal exponentiation. Using some elementary embeddings we can obtain a few inequalities in cardinal arithmetic.

LEMMA 2.1. If \(j: M \to V_\gamma \), \(j(\delta) = \lambda \), \(\rho \in j"M \), \(\mu = (\rho^\delta)^+ \) and \(\mu \in M \), then \(\rho^\lambda < j(\mu) \).

PROOF. Let \(j(\eta) = \rho \) and assume to the contrary that \(\rho^\lambda \geq j(\mu) \). Hence there exists some function from \(\lambda^\rho \) onto \(j(\mu) \). So in \(M \) there is a function which transforms \((\delta_\eta)^M \) onto \(\mu \). As \(\eta \leq \rho \), the contradiction \(\mu \leq (\delta_\eta)^M \leq \rho^\delta < \mu \) establishes the Lemma.

COROLLARY 2.2. If \((\kappa, \lambda) \to (\mu, < \nu) \) and \(\rho^\alpha < \mu \) for all \(\alpha < \nu \), then \(\rho^\lambda < \kappa \). Therefore, if \(\kappa \) is \(\nu \)-Rowbottom and \(2^\alpha < \kappa \) for all \(\alpha < \nu \), then \(\kappa \) is the strong limit cardinal.

REMARK 2.3. If \(2^\omega < \aleph_\omega \) and \(\aleph_\omega \) is Rowbottom, then \(\aleph_\omega \) is the strong limit cardinal. By Theorem 84 from [3] and Corollary 1.4 we can even evaluate that \(2^{\aleph_{\omega + 1}} = 2^{\aleph_\omega} \) or \(2^{\aleph_{\omega + 1}} < j(\aleph_{\omega + 2}) \) for all \(n < \omega \), whenever \(j: M \to V_\gamma \) is an arbitrary elementary embedding such that \(j(\aleph_\omega) = \aleph_\omega \) and some countable ordinal is moved by \(j \).

REMARK 2.4. If a cardinal \(\kappa \) is not strong limit, then the property \((\kappa, \lambda) \to (\kappa, < \lambda) \) fails for the least \(\lambda < \kappa \) such that \(2^\lambda \geq \kappa \).

The same arguments can be used for proving

LEMMA 2.5. If \(j: M \to V_\gamma \), \(j(\delta) = \lambda \), \(\rho \in j"M \), \(\mu = (\delta^\rho)^+ \) and \(\mu \in M \), then \(\lambda^\rho < j(\mu) \).

COROLLARY 2.6. If \((\kappa, \lambda) \to (\mu, < \nu) \) and \(\alpha^\rho < \mu \) for all \(\alpha < \nu \), then \(\lambda^\rho < \kappa \). Therefore, if \(\kappa \) is \(\nu \)-Rowbottom and \(\alpha^\omega < \kappa \) for all \(\alpha < \nu \), then \(\lambda^\omega < \kappa \) for all \(\lambda < \kappa \).

LEMMA 2.7. If \((\kappa, \lambda) \to (\mu, < \lambda) \), \(\text{cf}(\nu) = \lambda \) and \(\alpha^\lambda < \mu \) for all \(\alpha < \nu \), then \(\nu^\lambda < \kappa \). Hence \(2^\nu < \kappa \), if \(\nu \leq \mu \) is a strong limit singular cardinal with \(\text{cf}(\nu) = \lambda \).

PROOF. Choose an elementary embedding \(j: M \to V_{\kappa + \omega} \) such that \(j(\delta) = \lambda \) for some \(\delta < \lambda \), \(j(\tau) = \kappa \) for some \(\tau \geq \mu \) and \(\mu, \nu \in j"M \). But \(j(\nu) = \nu \) implies

\[
\lambda = \text{cf}(j(\nu)) = j(\text{cf}(\nu)^M(\nu)) \geq j(\lambda) > j(\delta) = \lambda.
\]
Thus \(\nu \) is moved by \(j \) and so \(j \) witnesses \((\kappa, \nu) \rightarrow (\mu, < \nu)\). Now Corollary 2.6 completes the proof. \(\square \)

Galvin-Hajnal's method \([2]\) and Corollary 1.6 allow us to formulate some bounds on \(\nu^{\text{cf}(\nu)} \) in certain cases of singular cardinals \(\nu > \mu \).

Theorem 2.8. Assume \((\kappa, \lambda) \rightarrow (\mu, < \lambda)\). Let \(\lambda \leq \eta \leq \mu \) and \(\nu = \aleph_\eta \). If \(\text{cf}(\eta) = \lambda \) and \(\alpha^\lambda < \nu \) for all \(\alpha < \nu \), then \(\nu^\lambda < \aleph_\kappa \). In particular, if \(\nu \) is the strong limit singular cardinal of cofinality \(\lambda \), then \(2^\nu < \aleph_\kappa \). \(\square \)

Corollary 2.9 (Magidor [4]). Presuming Chang's Conjecture \((\lambda^+, \lambda) \rightarrow (\lambda, < \lambda), \text{ if } \aleph_\lambda \text{ is the strong limit cardinal, then } 2^{\aleph_\lambda} < \aleph_{\lambda^+}. \square \)

Corollary 2.10. If \(\aleph_\omega \) is Rowbottom and \(\aleph_{\omega_n} \) is the strong limit cardinal for some \(n < \omega \), then \(2^{\aleph_{\omega_n}} < \aleph_{\omega_\omega}. \square \)

The main theorem is based on the following technical

Claim 2.11. Let \(\lambda \) be the least cardinal such that \(\rho^\lambda > \rho^\nu \). If \((\kappa, \lambda) \rightarrow (\mu, < \lambda), \lambda < \mu, \text{ cf}(\mu) \neq \lambda \) and \(\nu^\mu < \aleph_\lambda \), then \(\nu^\lambda < \kappa \). Moreover, \(\rho^\lambda < \kappa \) unless \(\kappa \) is singular.

Proof. Simple arithmetic shows that \(\lambda \) is regular. Clearly, \(\nu < \lambda \leq \rho^\nu \). Assigning for each \(f \in \lambda^\rho \) the sequence \(\bar{f} = \{ f \upharpoonright \alpha: \alpha < \lambda \} \) we get the branching family \(F \) of \(\rho^\lambda \) functions from \(\lambda \) into some set of cardinality \(\rho^\nu \) (whenever \(\bar{f}, \bar{g} \in F \) and \(\bar{f}(\beta) = \bar{g}(\beta) \), then \(\bar{f}(\alpha) = \bar{g}(\alpha) \) for all \(\alpha < \beta \)—compare [3, p. 431]).

Let \(\rho^\nu < \sigma < \rho^\lambda \) be any regular cardinal. As \(\text{cf}(\eta) \neq \lambda \) for all cardinals \(\mu \leq \eta < \aleph_\lambda(\mu) \), the proof of Lemma 35.2 in [3] shows how then to construct a branching family \(G \) of \(\sigma \) functions \(f: \lambda \rightarrow \eta \) for some \(\eta \leq \mu, \eta \leq \lambda \) or \(\text{cf}(\eta) = \lambda \). But Corollary 1.2 gives \(|G| < \kappa \), so we are done. \(\square \)

Lemma 2.12. If \(\nu < \mu, \text{ cf}(\mu) \leq \nu \) or \(\mu \) is regular, \((\kappa, \lambda) \rightarrow (\mu, < \lambda)\) holds for every regular \(\nu < \lambda < \mu \) and \(\kappa^- \leq \rho^\nu < \aleph_{\nu^+}(\mu) \), then \(\rho^{<\mu} = \rho^\nu \). \(\square \)

Corollary 2.13. Assume \((\lambda^+, \lambda) \rightarrow (\lambda^+, < \lambda)\). Then \(2^{<\lambda} = \lambda \) implies \(2^\lambda = \lambda^+ \) and \(\lambda^+ \leq 2^{<\lambda} < \aleph_\lambda \) implies \(2^\lambda = 2^{<\lambda}. \square \)

Theorem 2.14. Let \(\nu = \sup(\lambda < \kappa: \lambda \text{ is regular and } (\kappa, \lambda) \rightarrow (\kappa, < \lambda) \text{ fails}). \) If \(\nu < \kappa \) and \(\kappa^- \leq 2^\nu < \aleph_{\nu^+}(\kappa) \), then \(2^{<\kappa} = 2^\nu \). In particular, if \(\kappa \) is \(\nu^+ \)-Rowbottom and \(\kappa \leq 2^\nu < \aleph_{\nu^+}(\kappa) \), then \(2^{<\kappa} = 2^\nu \).

Proof. If \(\nu < \kappa \) then \((\kappa, \lambda) \rightarrow (\kappa, < \lambda)\) for every regular \(\nu < \lambda < \kappa \). It is easy to see that then \(\kappa \) is regular or \(\text{cf}(\kappa) \leq \nu \) (compare Lemma 2 in [8]). Applying Lemma 2.12 we finish the proof. \(\square \)

Corollary 2.15. If \(\aleph_\omega \) is Rowbottom and \(\aleph_\omega < 2^{\aleph_n} < \aleph_{\omega_{n+1}} \) for some \(n < \omega \), then \(2^{\aleph_n} = 2^{\aleph_n} \). \(\square \)

Remark 2.16. If \(\kappa \) is \(\nu \)-Rowbottom and \(\kappa \leq 2^{<\nu} < \aleph_{\text{cf}(\nu)}(\kappa) \), then \(2^{<\kappa} = 2^{<\nu}. \) \(\square \)

Question 2.17. Under the notation of Theorem 2.14, is \(\nu < \kappa \) whenever \(\kappa \) is Jónsson?
3. The first critical point. The least ordinal moved by an elementary embedding \(j: M \rightarrow V_\gamma \) is regular in \(M \). Thus the correspondence between Rowbottom-type properties and elementary embeddings shows that the first cardinal \(\nu \leq \mu \) such that \((\kappa, \nu) \rightarrow (\mu, < \nu) \) is regular. We shall prove that such \(\nu \) cannot be strongly inaccessible, whenever \(\mu = \kappa \).

Lemma 3.1. Assume that \((\kappa, \nu) \rightarrow (\kappa, < \nu) \) and \(\nu < \kappa \) is a limit cardinal. Let \(\lambda \leq \kappa \) be the least cardinal such that \(\lambda > \nu \) and the property \((\kappa, \lambda) \rightarrow (\kappa, < \lambda) \) fails. If \(\nu^{\text{cf}}(\nu) < \lambda \), then there exists \(\rho < \nu \) such that \((\kappa, \nu) \rightarrow (\kappa, < \rho) \).

Proof. Set \(A = \{ \sigma < \nu: (\kappa, \sigma) \rightarrow (\kappa, < \sigma) \} \) and \(\eta = \sup A \). If \(\eta < \nu \), then our statement is true for \(\rho = \eta^+ \). If this were false, there would be some strictly increasing sequence \(\langle \sigma_\alpha: \alpha < \text{cf}(\nu) \rangle \) of elements of \(A \), cofinal in \(\nu \). For each \(\alpha < \text{cf}(\nu) \) we can find a partition \(f_\alpha: [\kappa]^\kappa \rightarrow \sigma_\alpha \) such that \(|f_\alpha''[X]^{<\omega}| = \sigma_\alpha \) for every \(X \subseteq \kappa \) of size \(\kappa \) (a counterexample for \((\kappa, \sigma_\alpha) \rightarrow (\kappa, < \sigma_\alpha) \)).

Put \(B = \prod_{\alpha < \text{cf}(\nu)} \sigma_\alpha \) and define \(g: [\kappa]^\kappa \rightarrow B \) setting \(g(s) = \langle f_\alpha(s): \alpha < \text{cf}(\nu) \rangle \) for each finite subset \(s \subseteq \kappa \). As \(|B| = \nu^{\text{cf}}(\nu) < \lambda \), the definition of \(\lambda \) supplies a set \(X \subseteq \kappa \) such that \(|X| = \kappa \) and \(|g''[X]^{<\omega}| = \nu \). On the other hand, \(|g''[X]^{<\omega}| \geq \sup_{\alpha < \text{cf}(\nu)} |f_\alpha''[X]^{<\omega}| \geq \nu \) by definition of \(g \). This contradiction establishes the Lemma. \(\square \)

Corollary 3.2. If \(\nu < \kappa \) is a strong limit cardinal and \((\kappa, \nu) \rightarrow (\kappa, < \nu) \), then \((\kappa, \nu) \rightarrow (\kappa, < \rho) \) for some \(\rho < \nu \). Thus the least cardinal \(\lambda < \kappa \) such that \((\kappa, \lambda) \rightarrow (\kappa, < \lambda) \) cannot be strongly inaccessible.

Proof. Let \(\lambda \leq \kappa \) be the least cardinal such that \(\lambda > \nu \) and \((\kappa, \lambda) \rightarrow (\kappa, < \lambda) \) fails. Observe that \(\lambda \) is \(\nu \)-Rowbottom. Since \(2^{\nu^+} = \nu \), the cardinal \(\lambda \) is strong limit by Corollary 2.2. Now \(\nu^{\text{cf}}(\nu) = 2^\nu < \lambda \) and our claim follows from Lemma 3.1. \(\square \)

Question 3.3. Is the least \(\lambda < \kappa \) such that \((\kappa, \lambda) \rightarrow (\kappa, < \lambda) \) is always a successor cardinal?

Theorem 3.4. Every strongly inaccessible Jónsson cardinal \(\kappa \) is \(\rho \)-Rowbottom for some \(\rho < \kappa \).

Proof. Let \(\lambda < \kappa \) be any regular cardinal such that \((\kappa, \lambda) \rightarrow (\kappa, < \lambda) \). The set \(S = \{ \nu < \kappa: \text{cf}(\nu) = \lambda \) and \(\nu \) is strong limit \} is stationary in \(\kappa \). Lemma 2 from \([8]\) shows that \((\kappa, \nu) \rightarrow (\kappa, < \nu) \) for every \(\nu \in S \). By Corollary 3.2, for each \(\nu \in S \) we can choose some \(\rho_\nu < \nu \) so that \((\kappa, \nu) \rightarrow (\kappa, < \rho_\nu) \). By Fodor’s Theorem there exist some fixed \(\rho < \kappa \) and a stationary subset \(T \subseteq \kappa \) such that \((\kappa, \nu) \rightarrow (\kappa, < \rho) \) for each \(\nu \in T \). This means that \(\kappa \) is \(\rho \)-Rowbottom, since \(T \) is unbounded in \(\kappa \). \(\square \)

Question 3.5. May we erase the word “strongly” from the above Theorem?

4. Jónsson models and successor cardinals. We showed in \([8]\) that a successor cardinal \(\kappa^+ \) is not Jónsson, whenever \(\kappa \) is regular. Alternatively, \(\kappa^+ \) is not Jónsson under \(2^\kappa = \kappa^+ \) \([1]\). Shelah’s method from \([6]\) enables us to weaken this presumption.

We say that a regular cardinal \(\mu \) is a possible scale for the sequence \(\langle \kappa_i: i < \lambda \rangle \) of cardinals iff there exists a sequence \(\langle f_\alpha: \alpha < \mu \rangle \) of functions on \(\lambda \) such that

\[(i) \ f_\alpha \in \prod_{i < \lambda} \kappa_i \text{ for all } \alpha < \mu, \]
\[(ii) \ |\{i < \lambda: f_\alpha(i) \geq f_\beta(i)\}| < \lambda \text{ for all } \alpha < \beta < \mu. \text{ (We shall write } f_\alpha < f_\beta.\text{)} \]
\[(iii) \text{ For every } f \in \prod_{i < \lambda} \kappa_i \text{ there exists } \alpha < \mu \text{ such that } |\{i < \lambda: f(i) \leq f_\alpha(i)\}| = \lambda \text{ (compare [6]).} \]
LEMMA 4.1 (SHELAH [6]). Let $j: M \to V$, and $N = j''M$. If μ is a possible scale for the sequence $(\kappa_i: i < \lambda) \in N$ of regular cardinals, $\lambda + 1 \subseteq N$ and $j(\mu) = \mu$, then $\{i < \lambda: j(\kappa_i) = \kappa_i\} = \lambda$.

PROOF. Set $A = \{i < \lambda: |N \cap \kappa_i| < \kappa_i\}$ and assume to the contrary that $|A| < \lambda$. As N is the elementary substructure of V, some sequence $(f_\alpha: \alpha < \mu) \in N$ exemplifies that μ is a possible scale for $(\kappa_i: i < \lambda)$. For each $i \in A$ the subset $B_i = \{f_\alpha(i): \alpha \in N \cap \mu\}$ of $N \cap \kappa_i$ has cardinality less than κ_i, so we may choose $\sup B_i < f(i) < \kappa_i$ by regularity of κ_i. Accepting $f(i) = 0$ for $i \in \lambda \setminus A$, we have $f_\alpha < f$ for every $\alpha \in N \cap \mu$. As the relation $<$ is transitive and the set $N \cap \mu$ is cofinal in μ, $f_\alpha < f$ for every $\alpha < \mu$, which is impossible. □

THEOREM 4.2. If $\kappa^{cf(\kappa)} = \kappa^+$, then κ^+ is not Jónsson.

PROOF. By our first remark in this item we may assume that $\lambda = cf(\kappa) < \kappa$. Suppose that κ^+ is Jónsson and pick an elementary embedding $j: M \to V_{\kappa^+ + \omega}$ such that $j(\alpha) = \alpha$ for all $\alpha \leq \lambda$, $j(\nu) > \nu$ for some $\nu < \kappa$ and $j(\kappa^+) = \kappa^+$ (see the proof of Theorem 1 in [8]). Then there exists some strictly increasing sequence $(\kappa_i: i < \lambda) \in j''M$ of cardinals, cofinal in κ, with $\kappa_0 \geq \nu$.

Cantor's diagonalization method shows that every family of κ functions $f \in \prod_{i < \lambda} \kappa_i^{+\omega}$ has an upper bound in the relation $<$. Since $|\prod_{i < \lambda} \kappa_i^{+\omega}| = \kappa^\lambda = \kappa^+$, κ^+ is the only possible scale for $(\kappa_i^+: i < \lambda)$. Now, by Lemma 4.1, the set $A = \{i < \lambda: j(\kappa_i^+) = \kappa_i^+\}$ is unbounded in λ. But each κ_i^+, where $i \in A$, is Jónsson, contradicting [8]. □

COROLLARY 4.3 (SHELAH [6]). If $2^{\aleph_\alpha} = \aleph_{\alpha + \gamma + 1}$ and $cf(\gamma) < \aleph_{\alpha + 1}$, then 2^{\aleph_α} cannot be Jónsson. □

With a slight modification, a similar argument can be used for

LEMMA 4.4. If κ^+ is Jónsson, $\lambda = cf(\kappa) > \omega$ and $\rho^\lambda < \kappa$ for $\rho < \kappa$, then the set $\{\rho < \kappa: \rho^+ is Jónsson\}$ contains some closed unbounded subset of κ.

PROOF. Let $j: M \to V_{\kappa^+ + \omega}$, $j(\alpha) = \alpha$ for all $\alpha \leq \lambda$, $j(\nu) > \nu$ for some $\lambda < \nu < \kappa$ and $j(\kappa^+) = \kappa^+$. Choose a strictly increasing continuous sequence $(\rho_i: i < \lambda) \in j''M$ of cardinals, cofinal in κ, with $\rho_0 \geq \nu$. Suppose by way of contradiction that the set $S = \{i < \lambda: \rho_i^+ is not Jónsson\}$ is stationary in λ.

Set $\kappa_i = \rho_i^+$ for $i \in S$ and $\kappa_i = \rho_i^{i+}$ for $i \in \lambda \setminus S$. Thus no κ_i is Jónsson. Since S is stationary, by an analogue of Lemma 8.5 stated in [3], every family of almost disjoint functions $f \in \prod_{i < \lambda} \kappa_i$ has at most κ^+ elements. But every family of κ functions $f \in \prod_{i < \lambda} \kappa_i$ has an upper bound in the relation $<$. Thus κ^+ is the only possible scale for $(\kappa_i: i < \lambda)$. Now each element of the set $\{\kappa_i: i < \lambda \land j(\kappa_i) = \kappa_i\} \neq \emptyset$ is Jónsson, contrary to our choice. □

REMARK 4.5. We recall another result of Shelah from [6] which can be formulated as follows: If $\rho^{cf(\kappa)} < \kappa$ for all $\rho < \kappa$ and κ^+ is Jónsson, then the set $\{\lambda < \kappa: \lambda is a regular Jónsson cardinal\}$ is unbounded in κ. Hence, if λ is arbitrary and $\lambda^{\omega} = \aleph_\alpha$, then $\aleph_{\alpha + \omega + 1}$ cannot be Jónsson. □

We can also leave out one assumption in Shelah's result [6].

LEMMA 4.6. If $(\lambda^+)^\omega = \lambda^+$ for all singular cardinals λ, then no successor cardinal is Jónsson.
PROOF. Suppose to the contrary that κ^+ is the least successor cardinal which is Jónsson. There are now two cases:

Case I: $\cf(\kappa) = \omega$. Then $\kappa^{\cf(\kappa)} \leq (\kappa^+)^\omega = \kappa^+$ and a contradiction follows from Theorem 4.2.

Case II: $\kappa > \cf(\kappa) > \omega$. First, collapse $\cf(\kappa)$ onto ω_1 using the notion of forcing $P = \{ p : p \text{ is a function with } \dom(p) \subseteq \omega_1 \text{ and } \ran(p) \subseteq \cf(\kappa) \}$ ordered by inclusion.

Let G be any generic filter on P. Since $|P| = \cf(\kappa)^\omega < \kappa$, it follows from [8] that κ^+ remains Jónsson in the forcing extension $V[G]$. Clearly, since P is ω_1-closed, ω_1 is preserved and $\cf(\kappa) = \omega_1$ in $V[G]$. Moreover, $|P|$ is collapsed onto ω_1 and every cardinal $\lambda > |P|$ in V remains a cardinal in $V[G]$. The equality $(\lambda^+)^\omega = \lambda^+$ is also true in $V[G]$ for every singular cardinal λ.

From now on work in $V[G]$. Let $j : M \to V, \gamma$ witness that κ^+ is Jónsson. Pick some strictly increasing continuous sequence $(\kappa_i : i < \omega_1) \in j''M$ of cardinals with cofinality ω, cofinal in κ. Since $\prod_{i < 1} \kappa_i^+ \leq (\kappa_1^+)^\omega = \kappa_1^+$ for all $1 < \omega_1$, by Claim 13 from [6] the successor κ_1^+ is a possible scale for $(\kappa_i^+ : i < \omega_1)$. It follows from Lemma 4.1 that the set $A = \{ i < \omega_1 : j(\kappa_i^+) = \kappa_i^+ \}$ is unbounded in ω_1. But if $i \in A$ and κ_i^+ is greater than the first ordinal moved by j, then κ_i^+ is Jónsson, which is a contradiction because $\cf(\kappa_i) = \omega$ and $(\kappa_i)^\omega = \kappa_i^+$. \(\square\)

The same proof shows

Lemma 4.7. Assume the Singular Cardinals Hypothesis. Then $2^\omega < \kappa$ implies that κ^+ is not Jónsson. \(\square\)

Lemma 4.8. No successor cardinal above a compact cardinal is Jónsson.

Proof. Solovay showed that the singular cardinals hypothesis holds above the least compact cardinal (see [3, p. 405]). Now proceed as in the proof of Lemma 4.6. \(\square\)

References

DEPARTMENT OF MATHEMATICS, GDAŃSK UNIVERSITY, WITA STWOSZA 57, 80-952 GDANSK, POLAND