Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

An intersection homology obstruction to immersions


Author: Nathan Habegger
Journal: Proc. Amer. Math. Soc. 96 (1986), 693-697
MSC: Primary 57Q35; Secondary 57R42, 58A35
DOI: https://doi.org/10.1090/S0002-9939-1986-0826504-8
MathSciNet review: 826504
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Given an immersion of a pseudomanifold in a manifold, certain Thom operations are naturally defined in intersection homology. This is used to obtain nonimmersion results for singular spaces.


References [Enhancements On Off] (What's this?)

  • [GM1] M. Goresky and R. MacPherson, Intersection homology theory, Topology 19 (1980), 135-162. MR 572580 (82b:57010)
  • [GM2] -, Intersection homology. II, Invent. Math. 72 (1983), 77-130. MR 696691 (84i:57012)
  • [G] M. Goresky, Intersection homology operations, Comment. Math. Helv. 59 (1984), 485-505. MR 761809 (86i:55008)
  • [H] N. Habegger, On the existence and classification of homotopy embeddings of a complex into a manifold, Thesis, Univ. of Geneva, 1981.
  • [M] C. McCrory, Geometric homology operations, Studies in Topology, Adv. in Math. Supplementary Studies, no. 5, 1979, pp. 119-141. MR 527247 (80j:57016)
  • [T] R. Thom, Espaces fibrés en sphères et carrés de Steenrod, Ann. Sci. École Norm. Sup. (4) 69 (1952). 109-182. MR 0054960 (14:1004c)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57Q35, 57R42, 58A35

Retrieve articles in all journals with MSC: 57Q35, 57R42, 58A35


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1986-0826504-8
Keywords: Intersection homology, pseudomanifold, immersion obstructions, Thom operations
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society