Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The homotopy type of certain laminated manifolds


Authors: R. J. Daverman and F. C. Tinsley
Journal: Proc. Amer. Math. Soc. 96 (1986), 703-708
MSC: Primary 57N15; Secondary 55P15
DOI: https://doi.org/10.1090/S0002-9939-1986-0826506-1
MathSciNet review: 826506
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ M$ denote a connected $ (n + 1)$-manifold $ n \geqslant 5$. A lamination $ G$ of $ M$ is an use decomposition of $ M$ into closed connected $ n$-manifolds. Daverman has shown that the decomposition space $ M/G$ is homeomorphic to a $ 1$-manifold possibly with boundary. If $ M/G = {R^1}$, we prove that $ M$ has the homotopy type of an $ n$-manifold if and only if $ {\prod _1}(M)$ is finitely presented. In the case that $ M/G = {S^1}$ we use the above result to construct an approximate fibration $ f:M \to {S^1}$. We then discuss the important interactions of this study with that of perfect subgroups of finitely presented groups.


References [Enhancements On Off] (What's this?)

  • [1] K. S. Brown, Cohomology of groups, Springer-Verlag, Berlin and New York, 1982. MR 672956 (83k:20002)
  • [2] R. Bieri and R. Strebel, Metaabelian quotients of finitely presented soluable groups are finitely presented, Homological Group Theory (C. T. C. Wall, ed.), Cambridge Univ. Press, London, 1979, pp. 231-234. MR 564426 (81g:20068)
  • [3] M. M. Cohen, A course in simple homotopy theory, Springer-Verlag, Berlin and New York, 1973. MR 0362320 (50:14762)
  • [4] R. J. Daverman, Decompositions of manifolds into codimension one submanifolds, Compositio Math. 55 (1985), 185-207. MR 795714 (87b:57016)
  • [5] -, Decompositions into submanifolds of fixed codimension, manuscript.
  • [6] R. J. Daverman and F. C. Tinsley, Laminated decompositions involving a given submanifold, Topology Appl. 20 (1985), 107-119. MR 800841 (87d:57013)
  • [7] -, Laminations, finitely generated perfect groups, and acyclic maps, preprint.
  • [8] J. P. F. Hudson, Piecewise linear topology, Math. Lecture Notes Series, Benjamin, New York, 1969. MR 0248844 (40:2094)
  • [9] L. S. Husch, Approximating approximate fibrations by fibrations, Canad. J. Math. 29 (1977), 897-913. MR 0500990 (58:18472)
  • [10] -, Lecture notes, Univ. of Tennessee.
  • [11] R. C. Kirby and L. C. Siebenmann, Foundational essays on topological manifolds, smoothings, and triangulations, Ann. of Math. Stud., No. 88, Princeton Univ. Press, Princeton, N. J., 1977. MR 0645390 (58:31082)
  • [12] D. Quillen, Cohomology of groups, Actes Congres Internat., Vol. 2, 1970, pp. 47-51. MR 0488054 (58:7627a)
  • [13] C. P. Rourke and B. J. Sanderson, Introduction to piecewise-linear topology, Springer-Verlag, Berlin and New York, 1972. MR 0350744 (50:3236)
  • [14] T. B. Rushing, Topological embeddings, Pure and Appl. Math., Vol. 52, Academic Press, New York, 1973. MR 0348752 (50:1247)
  • [15] L. C. Siebenmann, Ph.D thesis, Princeton Univ., 1965.
  • [16] E. H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966. MR 0210112 (35:1007)
  • [17] C. T. C. Wall, Finiteness conditions for CW-complexes, Proc. Royal Soc. London Ser. A 295 (1966), 129-139. MR 0211402 (35:2283)
  • [18] -(editor), Homological group theory, Cambridge Univ. Press, London, 1979.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57N15, 55P15

Retrieve articles in all journals with MSC: 57N15, 55P15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1986-0826506-1
Keywords: Lamination, decomposition, approximate fibration, homotopy type, finitely presented group, perfect subgroup
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society