Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Finitely presented modules over semiperfect rings


Author: Louis H. Rowen
Journal: Proc. Amer. Math. Soc. 97 (1986), 1-7
MSC: Primary 16A51; Secondary 16A50, 16A64, 16A65
DOI: https://doi.org/10.1090/S0002-9939-1986-0831374-8
MathSciNet review: 831374
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Results of Bjork and Sabbagh are extended and generalized to provide a Krull-Schmidt theory over a general class of semiperfect rings which includes left perfect rings, right perfect rings, and semiperfect PI-rings whose Jacobson radicals are nil.


References [Enhancements On Off] (What's this?)

  • [1] F. Anderson and K. Fuller, Rings and categories of modules, Graduate Texts in Math., no. 13, Springer-Verlag, Berlin, New York and Heidelberg, 1973. MR 1245487 (94i:16001)
  • [2] E. P. Armendariz, J. W. Fisher and R. L. Snider, On injective and surjective endomorphisms of finitely generated modules, Comm. Algebra 6 (1978), 659-672. MR 0469974 (57:9754)
  • [3] J. E. Bjork, Conditions which imply that subrings of semiprimary rings are semiprimary, J. Algebra 19 (1971), 384-395. MR 0284460 (44:1686)
  • [4] -, Conditions which imply that subrings of artinian rings are artinian, J. Reine Angew. Math. 247 (1971), 123-138. MR 0280529 (43:6249)
  • [5] F. Dischinger, Sur les anneaux fortement $ \pi $-réguliers, C.R. Acad. Sci. Paris Ser. A-B 283 (1976), A571-A573. MR 0422330 (54:10321)
  • [6] G. Sabbagh, Endomorphism rings of finitely presented modules, Proc. Amer. Math. Soc. 30 (1971), 75-78. MR 0283015 (44:248)
  • [7] J. W. Fisher and R. L. Snider On the von Neumann regularity of rings with regular prime factor rings, Pacific J. Math. 54 (1974), 135-144. MR 0360679 (50:13126)
  • [8] L. H. Rowen, Polynomial identities in ring theory, Pure and Applied Math., vol. 84, Academic Press, New York, 1980. MR 576061 (82a:16021)
  • [9] -, Finitely presented modules over semiperfect Noetherian rings, J. Algebra (to appear).
  • [10] -, An example of a left $ \pi $-regular ring, J. Algebra (to appear).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16A51, 16A50, 16A64, 16A65

Retrieve articles in all journals with MSC: 16A51, 16A50, 16A64, 16A65


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1986-0831374-8
Keywords: Semiperfect ring, indecomposable module, finitely presented module, Fitting's lemma, left $ \pi $-regular, $ {\pi _\infty }$-regular
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society