A SHORT PROOF OF THE EXISTENCE
OF VECTOR EUCLIDEAN ALGORITHMS

HELAMAN FERGUSON

ABSTRACT. The classical Euclidean algorithm for pairs of real numbers is
generalized to real n-vectors by Alg(n, Z). An iteration of Alg(n, Z) is defined
by three steps. Given n real numbers Alg(n, Z) constructs either n coefficients
of a nontrivial integral linear combination which is zero or n independent sets
of simultaneous approximations. Either the coefficients will be a column of a
GL(n, Z) matrix or the simultaneous approximations will be rows of GL(n, Z)
matrices constructed by Alg(n, Z). This algorithm characterizes linear inde-
dependence of reals over rationals by GL(n, Z) orbits of rank n — 1 matrices.

Let \(x \in \mathbb{R}^n \) be a row vector, \(n \geq 1 \), \(M(n, \mathbb{R}) \) the \(n \times n \) real matrices, and \(I_n \)
the \(n \times n \) identity matrix. An integral vector \(b \in \mathbb{Z}^n \) is a nearest integral vector to
\(x \in \mathbb{R}^n \) if the corresponding coordinate entries of \(b \) and \(x \) differ by no more than one half. Let \(\hat{A} \)
denote the transpose of the matrix \(A \). Define the matrix norm of \(A \) by
\(|A|^2 = \text{Trace} AA \), and similarly define \(|x| \). This norm is submultiplicative
as well as subadditive. Define \(m \in \mathbb{Z}^n \) to be a relation for \(x \) if \(m \neq 0 \) and \(x^m = 0 \).
The coordinates of \(x \) are said to be \(\mathbb{Z} \)-linearly independent if \(x \) has no relation. If
\(x \neq 0 \), set \(\hat{P} = xx^\text{ln} — xx \), then \(x \hat{P} = 0 \) and rank \(\hat{P} = n — 1 \). Let \(GL(n, \mathbb{Z}) \) be the
integral \(n \times n \) matrices with \(\det = \pm 1 \). Any row or column of any \(GL(n, \mathbb{Z}) \) matrix
consists of relatively prime integers. \(GL(n, \mathbb{Z}) \) acts on \(M(n, \mathbb{R}) \) by multiplication
on the left.

The algorithm \(\text{Alg}(n, \mathbb{Z}) \) will be defined by a single iteration which replaces a
vector, matrix pair \(x, P \) by a pair \(xA^{-1}, AP \) for the integral matrix \(A \in GL(n, \mathbb{Z}) \)
as constructed in Steps 1\(_n\), 2\(_n\) and 3\(_n\) below. The following notation for \(x \) and
\(P \) will be assumed in this inductive definition of \(\text{Alg}(n, \mathbb{Z}) \), cf. Step 2\(_n\). Suppose
\(x \neq 0 \), \(xP = 0 \), rank \(P = n — 1 \) for a real \(n \times n \) matrix \(P \). If the last entry of \(x \) is
\(t \in \mathbb{R} \) and \(t \neq 0 \), set \(x = (ut, t) \), \(u \in \mathbb{R}^{n-1} \). Set \(P = \begin{bmatrix} w \\ v \end{bmatrix} \) where \(v \) is the last row of
\(P \). Note that \(xP = 0 \) implies \(uW = —v \).

\(\text{Alg}(1, \mathbb{Z}), n = 1 \). If \(x = 0 \), terminate; otherwise set \(A = 1 \) and replace \(x, P \) by
\(x, P \) where \(P = 0 \).

\(\text{Alg}(n, \mathbb{Z}), n > 1 \). If some entry of \(x \) is zero, terminate; otherwise perform the
following three steps.

Step 1\(_n\). Let the permutation matrix \(E \) exchange a smallest row of \(P \) with the
last row of \(P \). Replace \(x, P \) by \(xE^{-1}, EP \).
Step 2ₙ. Let \(Q = u\hat{u}I_{n-1} - \hat{u}u \). Upon \(u, Q \) perform \(\text{Alg}(n - 1, \mathbb{Z}) \) until it terminates or \(B \in \text{GL}(n - 1, \mathbb{Z}) \) is constructed such that \(|BQW| < u\hat{u}|v|/2\sqrt{n+1}|.\)

Step 3ₙ. Let \(c \) be a nearest integral vector to \(B\hat{u}/u\hat{u}, c \in \mathbb{Z}^{n-1} \). Set \(A = \begin{bmatrix} B & c \\ 0 & 1 \end{bmatrix} \in \text{GL}(n, \mathbb{Z}) \).

Replace \(x, P \) by \(xA^{-1}, AP \).

Case \(n = 2 \), \(\text{Alg}(2, \mathbb{Z}) \), is equivalent to the classical Euclidean algorithm. Cf. \([1, 2] \) for generalized Euclidean algorithms and proofs for all \(n \geq 2 \) (more complex than the present \(\text{Alg}(n, \mathbb{Z}) \)). Note that if \(\text{Alg}(n, \mathbb{Z}) \) terminates, then a relation for \(x \) is a column of a \(\text{GL}(n, \mathbb{Z}) \) matrix constructed by a previous iteration of \(\text{Alg}(n, \mathbb{Z}) \).

Theorem. Either \(\text{Alg}(n, \mathbb{Z}) \) will construct a relation \(x \in \mathbb{R}^n \) after finitely many iterations or there is no relation for \(x \).

Proof. The theorem is true for \(n = 1 \); in this case \(\text{Alg}(n, \mathbb{Z}) \) simply distinguishes between \(x = 0 \) and \(x \neq 0 \). Suppose \(x \neq 0, x \in \mathbb{R}^n \), and consider the pair \(x, P \) where \(P = xxI_n - \hat{x}x \). Then \(P\hat{m} = (x\hat{x})m \) if \(m \) is any relation for \(x \). Since \(1 \leq |A\hat{m}| \) for any \(A \in \text{GL}(n, \mathbb{Z}) \),

\[
(*) \quad 0 < x\hat{x} \leq |AP||m|.
\]

Assume \(n > 1 \) and that the theorem is true for \(\text{Alg}(n - 1, \mathbb{Z}), \text{Alg}(n - 2, \mathbb{Z}), \ldots, \text{Alg}(1, \mathbb{Z}) \). Perform one iteration of \(\text{Alg}(n, \mathbb{Z}) \) upon \(x, P \) to construct the matrix \(A \in \text{GL}(n, \mathbb{Z}) \). Then \(x, P \) is replaced by \(xA^{-1}, AP \). The matrix of the first \(n - 1 \) rows of the product \(AP \) is \(BW + cv \). From the definition of \(Q \) in Step 2ₙ, \(W = \hat{u}W/u\hat{u} + QW/u\hat{u} \). Hence by this expansion of \(W \) in terms of \(Q \) and \(uW = -v \),

\[
BW + cv = B\hat{u}W/u\hat{u} + BQW/u\hat{u} + cv = (c - B\hat{u}/u\hat{u})v + BQW/u\hat{u}.
\]

Therefore by the inequality of Step 2ₙ,

\[
|BW + cv| \leq |c - B\hat{u}/u\hat{u}| |v| + |BQW/u\hat{u}|
\leq (\sqrt{n-1} + \sqrt{n+1})|v|/2.
\]

It is supposed that \(x, P \) are as after Step 1ₙ, so that \(n|v|^2 \leq |P|^2 \). Then

\[
|AP|^2 = |BW + cv|^2 + |v|^2 < (n^2 + 6n + 4)|P|^2/4(n(n + 1)).
\]

Therefore

\[
(**) \quad |AP| < \frac{1}{2}\sqrt{1 + (5/n)}|P|.
\]

Set \(M_0 = I_n \) and iterate \(\text{Alg}(n, \mathbb{Z}) \) \(k \) times upon \(x, P \) (initially \(P = x\hat{x}I_n - \hat{x}x \)). Let \(M_k \in \text{GL}(n, \mathbb{Z}) \) be the product of the \(A \) and \(E \) matrices from Steps 3ₙ and 1ₙ up to and including the \(k \)th iteration, \(k \geq 0 \). If \(\text{Alg}(n, \mathbb{Z}) \) terminates at the \((k+1) \)st iteration, some entry of \(xM_k^{-1} \) is zero and a column of \(M_k^{-1} \) is a relation for \(x \). Such a relation will consist of relatively prime integers. Similarly if any of \(\text{Alg}(n - 1, \mathbb{Z}), \text{Alg}(n - 2, \mathbb{Z}), \ldots \) terminate, then a relation for \(x \) has been constructed. If \(\text{Alg}(n, \mathbb{Z}) \) never terminates for \(x \), then from the second inequality \((** \) \(M_kP \) tends to zero as \(k \) increases without bound. Since the first inequality \((*) \) is true for any relation \(m \in \mathbb{Z}^n, |m| \) cannot remain bounded and there are no relations for \(x \).
COROLLARY 1. If \(x \in \mathbb{R}^n \) has no relation, then for every \(\varepsilon > 0 \) \(\text{Alg}(n, \mathbb{Z}) \) constructs \(A \in \text{GL}(n, \mathbb{Z}) \) with each row less than distance \(\varepsilon \) from the line \(\mathbb{R}x \).

PROOF. \((x\hat{x})A = (A\hat{x})x + AP\) is an orthogonal decomposition of \(A \) where \(x\hat{x}I_n = \hat{x}x + P \). Set \(A = M_k \) for the \(k \)th iteration of \(\text{Alg}(n, \mathbb{Z}) \) on \(x \). Since \(\text{Alg}(n, \mathbb{Z}) \) never terminates then by the second inequality (***) above, \(M_kP \) tends to zero as \(k \) increases. Specifically, if \(k > (\log(|P|/\varepsilon))/(\log(2/\sqrt{1 + (5/n)}) \), then \(|M_kP| < \varepsilon \).

COROLLARY 2. The closure of the \(\text{GL}(n, \mathbb{Z}) \) orbit of a rank \(n - 1 \) matrix \(P \) contains the zero matrix if and only if the coordinates of any eigenvector corresponding to zero of \(P \) are \(\mathbb{Z} \)-linearly independent.

PROOF. Let \(P \) have rank \(n - 1 \) and let \(x, 0 \neq x \in \mathbb{R}^n \), be an eigenvector of \(P \) so that \(xP = 0 \). The if direction: there is no relation for \(x \). Hence the algorithm \(\text{Alg}(n, \mathbb{Z}) \) applied to \(x, P \) never terminates. Then matrices \(A \in \text{GL}(n, \mathbb{Z}) \) are constructed by iteration of \(\text{Alg}(n, \mathbb{Z}) \) such that by the second inequality (***) the norm \(|AP| \) and hence \(AP \) is arbitrarily small. The only if direction: the zero matrix is in the closure of \(\text{GL}(n, \mathbb{Z})P \); i.e., there are \(A \in \text{GL}(n, \mathbb{Z}) \) such that \(AP \) is arbitrarily small. By the first inequality (*) this contradicts the existence of a relation for \(x \).

REFERENCES