A SHORT PROOF OF THE EXISTENCE OF VECTOR EUCLIDEAN ALGORITHMS

HELAMAN FERGUSON

ABSTRACT. The classical Euclidean algorithm for pairs of real numbers is generalized to real \(n \)-vectors by \(\text{Alg}(n, \mathbb{Z}) \). An iteration of \(\text{Alg}(n, \mathbb{Z}) \) is defined by three steps. Given \(n \) real numbers \(\text{Alg}(n, \mathbb{Z}) \) constructs either \(n \) coefficients of a nontrivial integral linear combination which is zero or \(n \) independent sets of simultaneous approximations. Either the coefficients will be a column of a \(\text{GL}(n, \mathbb{Z}) \) matrix or the simultaneous approximations will be rows of \(\text{GL}(n, \mathbb{Z}) \) matrices constructed by \(\text{Alg}(n, \mathbb{Z}) \). This algorithm characterizes linear independence of reals over rationals by \(\text{GL}(n, \mathbb{Z}) \) orbits of rank \(n - 1 \) matrices.

Let \(x \in \mathbb{R}^n \) be a row vector, \(n \geq 1 \), \(M(n, \mathbb{R}) \) the \(n \times n \) real matrices, and \(I_n \) the \(n \times n \) identity matrix. An integral vector \(b \in \mathbb{Z}^n \) is a nearest integral vector to \(x \in \mathbb{R}^n \) if the corresponding coordinate entries of \(b \) and \(x \) differ by no more than one half. Let \(\hat{A} \) denote the transpose of the matrix \(A \). Define the matrix norm of \(A \) by \(|A| = \sqrt{\text{Trace } AA} \), and similarly define \(|x| \). This norm is submultiplicative as well as subadditive. Define \(m \in \mathbb{Z}^n \) to be a relation for \(x \) if \(m \neq 0 \) and \(x^t m = 0 \). The coordinates of \(x \) are said to be \(\mathbb{Z} \)-linearly independent if \(x \) has no relation. If \(x \neq 0 \), set \(P = x^t I_n - \hat{x} x \), then \(xP = 0 \) and rank \(P = n - 1 \). Let \(\text{GL}(n, \mathbb{Z}) \) be the integral \(n \times n \) matrices with det = \(\pm 1 \). Any row or column of any \(\text{GL}(n, \mathbb{Z}) \) matrix consists of relatively prime integers. \(\text{GL}(n, \mathbb{Z}) \) acts on \(M(n, \mathbb{R}) \) by multiplication on the left.

The algorithm \(\text{Alg}(n, \mathbb{Z}) \) will be defined by a single iteration which replaces a vector, matrix pair \(x, P \) by a pair \(xA^{-1}, AP \) for the integral matrix \(A \in \text{GL}(n, \mathbb{Z}) \) as constructed in Steps 1\(n \), 2\(n \), and 3\(n \) below. The following notation for \(x \) and \(P \) will be assumed in this inductive definition of \(\text{Alg}(n, \mathbb{Z}) \), cf. Step 2\(n \). Suppose \(x \neq 0 \), \(xP = 0 \), rank \(P = n - 1 \) for a real \(n \times n \) matrix \(P \). If the last entry of \(x \) is \(t \in \mathbb{R} \) and \(t \neq 0 \), set \(x = (ut, t) \), \(u \in \mathbb{R}^{n-1} \). Set \(P = \begin{pmatrix} \hat{v} \\ v \end{pmatrix} \) where \(v \) is the last row of \(P \). Note that \(xP = 0 \) implies \(uW = -v \).

\(\text{Alg}(1, \mathbb{Z}) \), \(n = 1 \). If \(x = 0 \), terminate; otherwise set \(A = 1 \) and replace \(x, P \) by \(x, P \) where \(P = 0 \).

\(\text{Alg}(n, \mathbb{Z}) \), \(n > 1 \). If some entry of \(x \) is zero, terminate; otherwise perform the following three steps.

Step 1\(n \). Let the permutation matrix \(E \) exchange a smallest row of \(P \) with the last row of \(P \). Replace \(x, P \) by \(xE^{-1}, EP \).
Step 2n. Let \(Q = uûI_{n-1} - ûu \). Upon \(u, Q \) perform Alg\((n-1, \mathbb{Z})\) until it terminates or \(B \in \text{GL}(n-1, \mathbb{Z}) \) is constructed such that \(|BQW| < uû|v|/\sqrt{2n+1} \).

Step 3n. Let \(c \) be a nearest integral vector to \(Bû/uû, c \in \mathbb{Z}^{n-1} \). Set
\[
A = \begin{bmatrix} B & c \\ 0 & 1 \end{bmatrix} \in \text{GL}(n, \mathbb{Z}).
\]
Replace \(x, P \) by \(xA^{-1}, AP \).

Case \(n = 2 \), Alg\((2, \mathbb{Z})\), is equivalent to the classical Euclidean algorithm. Cf. [1, 2] for generalized Euclidean algorithms and proofs for all \(n \geq 2 \) (more complex than the present Alg\((n, \mathbb{Z})\)). Note that if Alg\((n, \mathbb{Z})\) terminates, then a relation for \(x \) is a column of a GL\((n, \mathbb{Z})\) matrix constructed by a previous iteration of Alg\((n, \mathbb{Z})\).

Theorem. Either Alg\((n, \mathbb{Z})\) will construct a relation \(x \in \mathbb{R}^n \) after finitely many iterations or there is no relation for \(x \).

Proof. The theorem is true for \(n = 1 \); in this case Alg\((n, \mathbb{Z})\) simply distinguishes between \(x = 0 \) and \(x \neq 0 \). Suppose \(x \neq 0, x \in \mathbb{R}^n \), and consider the pair \(x, P \) where \(P = xxI_n - ëx \). Then \(Pû = (xû)m \) if \(m \) is any relation for \(x \). Since \(1 \leq |Aû| \) for any \(A \in \text{GL}(n, \mathbb{Z}) \),
\[
(*) \quad 0 < xû \leq |AP||m|.
\]

Assume \(n > 1 \) and that the theorem is true for Alg\((n-1, \mathbb{Z})\), Alg\((n-2, \mathbb{Z})\), ..., Alg\((1, \mathbb{Z})\). Perform one iteration of Alg\((n, \mathbb{Z})\) upon \(x, P \) to construct the matrix \(A \in \text{GL}(n, \mathbb{Z}) \). Then \(x, P \) is replaced by \(xA^{-1}, AP \). The matrix of the first \(n-1 \) rows of the product \(AP \) is \(BW + cv \). From the definition of \(Q \) in Step 2n, \(W = ûuW/uû + QW/uû \). Hence by this expansion of \(W \) in terms of \(Q \) and \(uW = -v \),
\[
BW + cv = BûuW/uû + BQW/uû + cv = (c - Bû/uû)v + BQW/uû.
\]
Therefore by the inequality of Step 2n,
\[
|BW + cv| \leq |c - Bû/uû| |v| + |BQW/uû|
\leq (\sqrt{n-1} + 1/\sqrt{n+1})|v|/2.
\]
It is supposed that \(x, P \) are as after Step 1n, so that \(n|v|^2 \leq |P|^2 \). Then
\[
|AP|^2 = |BW + cv|^2 + |v|^2 < (n^2 + 6n + 4)|P|^2/4n(n + 1).
\]
Therefore
\[
(**) \quad |AP| < \frac{1}{2} \sqrt{1 + (5/n)}|P|.
\]

Set \(M_0 = I_n \) and iterate Alg\((n, \mathbb{Z})\) \(k \) times upon \(x, P \) (initially \(P = xûI_n - ëx \)). Let \(M_k \in \text{GL}(n, \mathbb{Z}) \) be the product of the \(A \) and \(E \) matrices from Steps 3n and 1n up to and including the \(k \)th iteration, \(k \geq 0 \). If Alg\((n, \mathbb{Z})\) terminates at the \((k+1)\)st iteration, some entry of \(xM_k^{-1} \) is zero and a column of \(M_k^{-1} \) is a relation for \(x \). Such a relation will consist of relatively prime integers. Similarly if any of Alg\((n-1, \mathbb{Z})\), Alg\((n-2, \mathbb{Z})\), ... terminate, then a relation for \(x \) has been constructed. If Alg\((n, \mathbb{Z})\) never terminates for \(x \), then from the second inequality \((**) \) \(M_kP \) tends to zero as \(k \) increases without bound. Since the first inequality \((*) \) is true for any relation \(m \in \mathbb{Z}^n \), \(|m| \) cannot remain bounded and there are no relations for \(x \).
COROLLARY 1. If $x \in \mathbb{R}^n$ has no relation, then for every $\varepsilon > 0$ Alg(n, \mathbb{Z}) constructs $A \in \text{GL}(n, \mathbb{Z})$ with each row less than distance ε from the line Rx.

PROOF. $(x\hat{x})A = (A\hat{x})x + AP$ is an orthogonal decomposition of A where $x\hat{x}I_n = \hat{x}x + P$. Set $A = M_k$ for the kth iteration of Alg(n, \mathbb{Z}) on x. Since Alg(n, \mathbb{Z}) never terminates then by the second inequality (**) above, M_kP tends to zero as k increases. Specifically, if $k > (\log(|P|/\varepsilon))/(\log(2/\sqrt{1 + (5/n)})$, then $|M_kP| < \varepsilon$.

COROLLARY 2. The closure of the GL(n, \mathbb{Z}) orbit of a rank $n - 1$ matrix P contains the zero matrix if and only if the coordinates of any eigenvector corresponding to zero of P are \mathbb{Z}-linearly independent.

PROOF. Let P have rank $n - 1$ and let x, $0 \neq x \in \mathbb{R}^n$, be an eigenvector of P so that $xP = 0$. The if direction: there is no relation for x. Hence the algorithm Alg(n, \mathbb{Z}) applied to x, P never terminates. Then matrices $A \in \text{GL}(n, \mathbb{Z})$ are constructed by iteration of Alg(n, \mathbb{Z}) such that by the second inequality (**) the norm $|AP|$ and hence AP is arbitrarily small. The only if direction: the zero matrix is in the closure of GL(n, \mathbb{Z})P; i.e., there are $A \in \text{GL}(n, \mathbb{Z})$ such that AP is arbitrarily small. By the first inequality (*) this contradicts the existence of a relation for x.

REFERENCES

DEPARTMENT OF MATHEMATICS, BRIGHAM YOUNG UNIVERSITY, PROVO, UTAH 84602