Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

A note on a theorem of Perron


Authors: K. C. Prasad and M. Lari
Journal: Proc. Amer. Math. Soc. 97 (1986), 19-20
MSC: Primary 11J70
MathSciNet review: 831378
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Given an infinite simple continued fraction $ \left[ {{a_0},{a_1}, \ldots ,{a_n}, \ldots } \right]$, let $ {M_n}$ denote $ \left[ {0,{a_n},{a_{n - 1}}, \ldots ,{a_1}} \right] + \left[ {{a_{n + 1}},{a_{n + 2}}, \ldots } \right]$. A well-known result due to Perron [1, III, 212] states: If $ {a_{n + 2}} = m$, then there is a $ k$ in $ \left\{ {n,n + 1,n + 2} \right\}$ for which $ {M_k} > \sqrt {{m^2} + 4} $. In this note we give a new proof for this result and add that there is a $ j$ in $ \left\{ {n,n + 1,n + 2} \right\}$ for which $ {M_j} < \sqrt {{m^2} + 4} $.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11J70

Retrieve articles in all journals with MSC: 11J70


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1986-0831378-5
PII: S 0002-9939(1986)0831378-5
Article copyright: © Copyright 1986 American Mathematical Society