On a question of Feit

Authors:
Pamela A. Ferguson and Alexandre Turull

Journal:
Proc. Amer. Math. Soc. **97** (1986), 21-22

MSC:
Primary 20C15

DOI:
https://doi.org/10.1090/S0002-9939-1986-0831379-7

MathSciNet review:
831379

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The following theorem is proved: Assume is an irreducible complex character of the finite group and is -solvable where is the set of prime divisors of . Then contains an element of order .

**[1]**G. Amit and D. Chillag,*On a question of Feit*, Pacific J. Math. (to appear).**[2]**R. Brauer,*A note on theorems of Burnside and Blichtfeldt*, Proc. Amer. Math. Soc.**15**(1964), 31-34. MR**0158004 (28:1232)****[3]**D. Gajendragadkar,*A characteristic class of characters of finite**-separable groups*, J. Algebra**59**(1979), 237-259. MR**543247 (82b:20012)****[4]**I. Isaacs,*Primitive characters, normal subgroups, and**-groups*, Math. Z.**177**(1981), 267-284. MR**612879 (82f:20026)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
20C15

Retrieve articles in all journals with MSC: 20C15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1986-0831379-7

Keywords:
Prime character,
-special character,

Article copyright:
© Copyright 1986
American Mathematical Society