Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Boundary continuity of holomorphic functions in the ball


Author: Frank Beatrous
Journal: Proc. Amer. Math. Soc. 97 (1986), 23-29
MSC: Primary 32A40; Secondary 30D40, 32A30
DOI: https://doi.org/10.1090/S0002-9939-1986-0831380-3
MathSciNet review: 831380
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that any holomorphic function on the unit ball of $ {{\mathbf{C}}^n}$ with $ n$th partial derivatives in the Hardy class $ {H^1}$ has a continuous extension to the closed unit ball, and that the restriction to any real analytic curve in the boundary which is nowhere complex tangential is absolutely continuous.


References [Enhancements On Off] (What's this?)

  • [1] F. Beatrous, Estimates for derivatives of holomorphic functions in pseudoconvex domains, Math. Z. 191 (1986), 91-116. MR 812605 (87b:32033)
  • [2] F. Beatrous and J. Burbea, Sobolev spaces of holomorphic functions in the ball, preprint. MR 1022241 (91e:46038)
  • [3] R. R. Coifman and R. Rochberg, Factorization theorems for Hardy spaces in several variables, Ann. of Math. (2) 103 (1976), 611-635. MR 0412721 (54:843)
  • [4] P. Duren, Theory of $ {H^p}$ spaces, Academic Press, New York, 1970. MR 0268655 (42:3552)
  • [5] I. Graham, An $ {H^p}$ space theorem for the radial derivatives of holomorphic functions on the unit ball in $ {{\mathbf{C}}^n}$, preprint.
  • [6] -, The radial derivative, fractional integrals, and the comparative growth of means of holomorphic functions on the unit ball in $ {{\mathbf{C}}^n}$, Recent Developments in Several Complex Variables, Ann. of Math. Stud., vol. 100, Princeton Univ. Press, Princeton, N. J., 1981, pp. 171-178. MR 627757 (83c:32009)
  • [7] G. M. Henkin, Integral representations of functions holomorphic in strictly pseudoconvex domains and some applications, Math. USSR-Sb. 7 (1969), 597-616.
  • [8] S. Krantz, Analysis on the Heisenberg group and estimates for functions in Hardy classes of several complex variables, Math. Ann. 244 (1979), 243-262. MR 553255 (81g:32007)
  • [9] J. E. Littlewood, Lectures on the theory of functions, Oxford Univ. Press, London, 1944. MR 0012121 (6:261f)
  • [10] J. E. Littlewood and R. E. A. C. Paley, Theorems on Fourier series and power series. (II), Proc. London Math. Soc. 42 (1936), 52-89.
  • [11] E. Ramirez de A., Ein Divisionsproblem und Randintegraldarstellungen in der komplexen Analysis, Math. Ann. 184 (1970), 172-187. MR 0269874 (42:4767)
  • [12] W. Rudin, Function theory in the unit ball of $ {{\mathbf{C}}^n}$, Springer-Verlag, Berlin and New York, 1980. MR 601594 (82i:32002)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 32A40, 30D40, 32A30

Retrieve articles in all journals with MSC: 32A40, 30D40, 32A30


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1986-0831380-3
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society