FACTORIZATION OF MEASURES AND PERFECTION
WOLFGANG ADAMSKI

ABSTRACT. It is proved that a probability measure P defined on a countably generated measurable space (Y, \mathcal{C}) is perfect iff every probability measure on $\mathbb{R} \times Y$ having P as marginal can be factored. This result leads to a generalization of a theorem due to Blackwell and Maitra.

We characterize countably generated measurable spaces (Y, \mathcal{C}) which have the following property: For any measurable space (X, \mathcal{A}) and any probability measure Q on the product space $(X \times Y, \mathcal{A} \otimes \mathcal{C})$, Q can be factored, $Q = \tilde{Q} \times K$, which means that \tilde{Q} is a probability measure on (X, \mathcal{A}) and $K: X \times \mathcal{C} \to [0,1]$ is a transition probability (i.e. $K(\cdot, C)$ is \mathcal{A}-measurable for every $C \in \mathcal{C}$ and $K(x, \cdot)$ is a probability measure on \mathcal{C} for every $x \in X$) such that $Q(A \times C) = \int_A K(x, C)\tilde{Q}(dx)$ holds for all $A \in \mathcal{A}$ and $C \in \mathcal{C}$. For the special case of a separable metric space Y equipped with its Borel σ-algebra, we obtain the characterization of absolutely measurable separable metric spaces given by Blackwell and Maitra in [1].

In the sequel we shall use the following notation. If Y is a topological space, then $\mathcal{B}(Y)$ denotes the Borel σ-algebra of Y. In particular, we denote by \mathcal{B} the Borel σ-algebra of the real line \mathbb{R} with the Euclidean topology. If (X, \mathcal{A}) and (Y, \mathcal{C}) are measurable spaces, $f: X \to Y$ is \mathcal{A}, \mathcal{C}-measurable and μ is a measure on \mathcal{A}, then μ^f denotes the image measure of μ under f. A probability measure P defined on a separable metric space (Y, \mathcal{C}) is said to be perfect if for every $C \in \mathcal{C}$, μ^f is \mathcal{B}-measurable for every $f \in Y$ such that $B \subseteq f(Y)$ and $P(f^{-1}(B)) = 1$. Several other characterizations of perfect measures are given in [5].

We can now prove the main result of this note. Observe that the proof of our implication $(3) \Rightarrow (1)$ is a modification of the proof of the implication $(c) \Rightarrow (a)$ in [1].

THEOREM. Let (Y, \mathcal{C}, P) be a probability space. Then the following three statements are equivalent:

(1) P is perfect.

(2) For any measurable space (X, \mathcal{A}), any countably generated sub-σ-algebra \mathcal{C}_0 of \mathcal{C} and any probability measure Q on $(X \times Y, \mathcal{A} \otimes \mathcal{C}_0)$ satisfying $Q(X \times C) = P(C)$ for all $C \in \mathcal{C}_0$, Q can be factored.

(3) For any countably generated sub-σ-algebra \mathcal{C}_0 of \mathcal{C} and any probability measure Q on $(\mathbb{R} \times Y, \mathcal{B} \otimes \mathcal{C}_0)$ satisfying $Q(\mathbb{R} \times C) = P(C)$ for all $C \in \mathcal{C}_0$, Q can be factored.

PROOF. $(1) \Rightarrow (2)$ Let (X, \mathcal{A}) be a measurable space, \mathcal{C}_0 a countably generated sub-σ-algebra of \mathcal{C} and Q a probability measure on $\mathcal{A} \otimes \mathcal{C}_0$ satisfying $Q(X \times C) = P(C)$ for all $C \in \mathcal{C}_0$. Denote by $\pi_1 [\pi_2]$ the projection of $X \times Y$ onto $X [Y]$. By...
FACTORIZATION OF MEASURES AND PERFECTION 31

[5, Theorem 3], the image measure $Q^{\pi_2} = P|\mathcal{C}_0$ is compact. Thus, by [2, 5.3.16], there exists a regular conditional probability K of π_2 given π_1, i.e. K is a transition probability on $X \times \mathcal{C}_0$ such that

$$Q(A \times C) = Q(\pi_1^{-1}(A) \cap \pi_2^{-1}(C)) = \int_A K(x, C)Q^{\pi_1}(dx)$$

holds for all $A \in \mathcal{A}$ and $C \in \mathcal{C}_0$. Thus Q can be factored.

$(2) \Rightarrow (3)$ Trivial.

$(3) \Rightarrow (1)$ Let $f: Y \to \mathbb{R}$ be \mathcal{C}-measurable. Put $Z := f(Y)$ and denote by \mathcal{B} the smallest σ-algebra in \mathbb{R} containing $\mathcal{B} \cup \{Z\}$. Extend P^f to a measure \tilde{P} on \mathcal{B} by setting $\tilde{P}((B_1 \cap Z) + (B_2 - Z)) := P^f(B_1)$ for $B_1, B_2 \in \mathcal{B}$. Next define a probability Q_1 on $(\mathbb{R}^2, \mathcal{B} \otimes \mathcal{B})$ by $Q_1(B \times \tilde{B}) := \tilde{P}(B \cap \tilde{B})$, $B \in \mathcal{B}$, $\tilde{B} \in \tilde{\mathcal{B}}$. $\mathcal{C}_0 := f^{-1}(\mathcal{B})$ is a countably generated sub-σ-algebra of \mathcal{C}. For $B \in \mathcal{B}$ and $C_0 \in \mathcal{C}_0$, say $C_0 = f^{-1}(B_0)$ with $B_0 \in \mathcal{B}$, put $Q(B \times C_0) := Q_1(B \times (B_0 \cap Z))$. Then Q is a well-defined probability on $\mathcal{B} \otimes \mathcal{C}_0$ satisfying

$$Q(\mathbb{R} \times C_0) = Q_1(\mathbb{R} \times (B_0 \cap Z)) = \tilde{P}(B_0 \cap Z) = P^f(B_0) = P(C_0)$$

for all $C_0 \in \mathcal{C}_0$. By (3), Q can be factored: $Q = \tilde{Q} \times K$, where \tilde{Q} is a probability on $(\mathbb{R}, \mathcal{B})$ and K is a transition probability on $\mathbb{R} \times \mathcal{C}_0$. Then $K'(x, B) := K(x, f^{-1}(B \cap Z))$, $x \in \mathbb{R}$, $B \in \mathcal{B}$, defines a transition probability on $\mathbb{R} \times \tilde{\mathcal{B}}$, and we obtain for $B \in \mathcal{B}$ and $\tilde{B} \in \tilde{\mathcal{B}}$,

$$\tilde{P}(B \cap \tilde{B}) = Q_1(B \times \tilde{B}) = Q_1(B \times (\tilde{B} \cap Z)) = Q(B \times f^{-1}(\tilde{B} \cap Z))$$

$$= \int_{\tilde{B}} K(x, f^{-1}(\tilde{B} \cap Z))\tilde{Q}(dx) = \int_B K'(x, \tilde{B})\tilde{Q}(dx),$$

i.e.

$$\tilde{P}(B \cap \tilde{B}) = Q_1(B \times \tilde{B}) = \int_B K'(x, \tilde{B})\tilde{Q}(dx) \quad \text{for } B \in \mathcal{B}, \tilde{B} \in \tilde{\mathcal{B}}.$$

Setting $\tilde{B} = Z$ in (\ast), we get $P^f(B) = \tilde{Q}(B)$ for $B \in \mathcal{B}$, so $P^f = \tilde{Q}$. Setting $B = \tilde{B}$ in (\ast), we obtain $P^f(B) = \int_B K'(x, B)\tilde{P}(dx)$ or

$$(\ast\ast) \quad \int_B (1 - K'(x, B))P^f(dx) = 0 \quad \text{for all } B \in \mathcal{B}.$$

Let $\mathcal{E} = \{B_1, B_2, \ldots\}$ be a countable algebra generating \mathcal{B}. In view of $(\ast\ast)$, we can find, for every $n \in \mathbb{N}$, a set $N_n \in \mathcal{B}$ such that $P^f(N_n) = 0$ and $1_{B_n}(x) \cdot (1 - K'(x, B_n)) = 0$ for $x \in \mathbb{R} - N_n$. Put $\tilde{N} := \bigcup_{n \in \mathbb{N}} N_n$ and $\mathcal{M} := \{B \in \mathcal{B} : 1_{B}(x) \cdot (1 - K'(x, B)) = 0 \text{ for all } x \in \mathbb{R} - \tilde{N}\}$. Then \mathcal{M} is a monotone class containing \mathcal{E}. This implies $\mathcal{M} = \mathcal{B}$ and hence $1_{B}(x) \cdot (1 - K'(x, B)) = 0$ for all $B \in \mathcal{B}$ and all $x \in \mathbb{R} - \tilde{N}$. In particular, we get $K'(x, \{x\}) = 1$ for all $x \in \mathbb{R} - \tilde{N}$. By construction of K', we also have $K'(x, Z) = 1$ for all $x \in \mathbb{R}$. It follows that $\mathbb{R} - \tilde{N} \subset Z$ which together with $P^f(\mathbb{R} - \tilde{N}) = 1$ implies (1).

COROLLARY 1. Let (Y, \mathcal{C}, P) be a probability space where \mathcal{C} is countably generated. Then the following three statements are equivalent:

1. P is perfect.

2. For any measurable space (X, \mathcal{A}) and any probability measure Q on $(X \times Y, \mathcal{A} \otimes \mathcal{C})$ satisfying $Q(X \times C) = P(C)$ for all $C \in \mathcal{C}$, Q can be factored.
(3') Every probability measure Q on $(\mathbb{R} \times Y, \mathcal{B} \otimes \mathcal{C})$ satisfying $Q(\mathbb{R} \times C) = P(C)$ for all $C \in \mathcal{C}$ can be factored.

Proof. In view of the Theorem, it suffices to prove the implications $(2) \Rightarrow (2')$, $(2') \Rightarrow (3')$ and $(3') \Rightarrow (3)$. Only the latter one is nontrivial.

Let \mathcal{C}_0 be a countably generated sub-σ-algebra of \mathcal{C}, and let Q be a probability on $\mathcal{B} \otimes \mathcal{C}_0$ satisfying $Q(\mathbb{R} \times C) = P(C)$ for all $C \in \mathcal{C}_0$. By means of a Hahn-Banach argument, combined with [3, 1(i)] (which can be applied since the marginal measure $B \in \mathcal{B} \rightarrow Q(B \times Y)$ is Radon and hence compact), Q can be extended to a probability measure \hat{Q} on $\mathcal{B} \otimes \mathcal{C}$ satisfying $\hat{Q}(\mathbb{R} \times C) = P(C)$ for all $C \in \mathcal{C}$ (cf. the proof of 2.3 in [4]). Since, by $(3')$, \hat{Q} can be factored, so can Q. This proves $(3') \Rightarrow (3)$.

Corollary 2. Let (Y, \mathcal{C}) be a countably generated measurable space. Then the following three statements are equivalent:

1. Every probability measure on \mathcal{C} is perfect.
2. For any measurable space (X, \mathcal{A}) and any probability measure Q on $(X \times Y, \mathcal{A} \otimes \mathcal{C})$, Q can be factored.
3. Every probability measure on $(\mathbb{R} \times Y, \mathcal{B} \otimes \mathcal{C})$ can be factored.

The theorem of Blackwell and Maitra [1] is now an immediate consequence of Corollary 2 and the following proposition.

Proposition. A separable metric space Y is absolutely measurable (i.e., if \tilde{Y} is a metric completion of Y and μ is a probability measure on $\mathcal{B}(\tilde{Y})$, then Y is μ-measurable) iff every probability measure on $\mathcal{B}(Y)$ is perfect.

Proof. According to [5, Theorem 11], the perfect probability measures on $\mathcal{B}(Y)$ are exactly the Radon probabilities on $\mathcal{B}(Y)$. On the other hand, any metric completion \tilde{Y} of Y is Polish and hence a Radon space (cf. [6, p. 122]). Thus our claim follows from Propositions 8 and 9 in [6, pp. 118–119].

Remark. Using the methods of Pachl (cf. [4, pp. 159–161]) one can even show that every probability space (Y, \mathcal{C}, P) which satisfies condition $(2')$ of Corollary 1 is compact (and hence perfect). On the other hand, the complete Lebesgue measure on the unit interval, is an example of a compact probability P that does not satisfy $(2')$.

References

Mathematisches Institut, Universität München, Theresienstr. 39, D-8000 München 2, Federal Republic of Germany