On Birkhoff quadrature formulas

Author:
A. K. Varma

Journal:
Proc. Amer. Math. Soc. **97** (1986), 38-40

MSC:
Primary 41A55

DOI:
https://doi.org/10.1090/S0002-9939-1986-0831383-9

MathSciNet review:
831383

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In an earlier work the author has obtained new quadrature formulas (see (1.3)) based on function values and second derivatives on the zeros of as defined by (1.2). The proof given earlier was quite long. The object of this paper is to provide a proof of this quadrature formula which is extremely simple and indeed does not even require the use of fundamental polynomials of (0,2) interpolation.

**[1]**J. Balazs and P. Turán,*Notes on interpolation*. II, Acta Math. Hungar.**8**(1957), 201-215. MR**0088590 (19:544d)****[2]**-,*Notes on interpolation*. III, Acta Math. Hungar.**9**(1958), 195-213.**[3]**V. I. Krylov,*Approximate calculation of integrals*, Translated by A. H. Stroud, Macmillan, New York, 1962. (Russian) MR**0144464 (26:2008)****[4]**G. G. Lorentz, K. Jetter and S. D. Riemenschneider,*Birkhoff interpolation*, Encyclopedia of Math. and Appl., Vol. XIX, Addison-Wesley, Reading, Mass., 1983. MR**680938 (84g:41002)****[5]**P. Nevai and A. K. Varma,*A new quadrature formula associated with the ultraspherical polynomials*, J. Approx. Theory (to appear). MR**888295 (88j:41066)****[6]**P. Turán,*On some open problems of approximation theory*, J. Approx. Theory**29**(1980), 23-85. MR**595512 (82e:41003)****[7]**A. K. Varma,*On some open problems of P. Turán concerning Birkhoff interpolation*, Trans. Amer. Math. Soc.**274**(1982), 797-808. MR**675080 (84a:41005)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
41A55

Retrieve articles in all journals with MSC: 41A55

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1986-0831383-9

Article copyright:
© Copyright 1986
American Mathematical Society