Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Complete metrics conformal to the hyperbolic disc


Authors: J. Bland and Morris Kalka
Journal: Proc. Amer. Math. Soc. 97 (1986), 128-132
MSC: Primary 53A30; Secondary 35J15, 58G30
MathSciNet review: 831400
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study complete metrics conformal to the hyperbolic disc. We show that any smooth function $ K$ bounded between two negative constants is the curvature of such a metric. We also show that if $ K \geq 0$ near the boundary, $ K$ cannot be the curvature of such a metric.


References [Enhancements On Off] (What's this?)

  • [1] Patricio Aviles and Robert McOwen, Conformal deformations of complete manifolds with negative curvature, J. Differential Geom. 21 (1985), no. 2, 269–281. MR 816672
  • [2] John S. Bland, Local boundary regularity of the canonical Einstein-Kähler metric on pseudoconvex domains, Math. Ann. 263 (1983), no. 3, 289–301. MR 704295, 10.1007/BF01457132
  • [3] R. Courant and D. Hilbert, Methods of mathematical physics. II, Interscience, New York, 1962.
  • [4] Shing Tung Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201–228. MR 0431040

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53A30, 35J15, 58G30

Retrieve articles in all journals with MSC: 53A30, 35J15, 58G30


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1986-0831400-6
Article copyright: © Copyright 1986 American Mathematical Society