On nonlinear evolution operators associated with some nonlinear dispersive equations

Authors:
Shinnosuke Oharu and Tadayasu Takahashi

Journal:
Proc. Amer. Math. Soc. **97** (1986), 139-145

MSC:
Primary 35Q20; Secondary 47H20, 58D25

DOI:
https://doi.org/10.1090/S0002-9939-1986-0831403-1

MathSciNet review:
831403

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The initial-boundary value problem for a nonlinear dispersive system with time-dependent boundary condition is discussed in the Sobolev space from the point of view of the theory of nonlinear evolution operators. A notion of weak solution to the problem is introduced and the associated family of solution operators is constructed in such a way that it gives rise to a nonlinear evolution operator with time-dependent domain. Various qualitative properties as well as regularity of the weak solutions are investigated through those of the constructed evolution operator.

**[1]**T. Benjamin, J. Bona and J. Mahony,*Model equations for long waves in nonlinear dispersive systems*, Philos. Trans. Roy. Soc. London Ser. A**272**(1972), 47-78. MR**0427868 (55:898)****[2]**J. Bona and P. Bryant,*A mathematical model for long waves generated by wavemakers in nonlinear dispersive systems*, Proc. Cambridge Philos. Soc.**73**(1973), 391-405. MR**0339651 (49:4409)****[3]**J. Bona and V. Dougalis,*An initial- and boundary-value problem for a model equation for propagation of long waves*, J. Math. Anal. Appl.**75**(1980), 503-522. MR**581837 (83c:35099)****[4]**M. Crandall and A. Pazy,*Nonlinear evolution equations in Banach spaces*, Israel J. Math.**11**(1972), 57-94. MR**0300166 (45:9214)****[5]**L. Evans,*Nonlinear evolution equations in an arbitrary Banach space*, Israel J. Math.**26**(1977), 1-42. MR**0440431 (55:13306)****[6]**T. Iwamiya, S. Oharu and T. Takahashi,*On the semigroup approach to some nonlinear dispersive equations*, Lecture Notes in Numer. Appl. Anal., vol. 1, Kinokuniya Book Store Co., Tokyo, 1979, pp. 95-134. MR**690439 (84d:35083)****[7]**K. Kobayasi, Y. Kobayashi and S. Oharu,*Nonlinear evolution operators in Banach spaces*, Osaka J. Math.**21**(1984), 281-310. MR**752464 (85h:47073)****[8]**-,*Nonlinear evolution operators in Banach spaces*. II, Hiroshima Math. J. (to appear).**[9]**L. Medeiros and M. Miranda,*Weak solutions for a nonlinear dispersive equation*, J. Math. Anal. Appl.**59**(1977), 432-441. MR**0466924 (57:6798)****[10]**R. E. Showalter,*Sobolev equations for nonlinear dispersive systems*, Applicable Anal.**7**(1978), 297-308. MR**504616 (80g:34067)****[11]**N. Pavel,*Nonlinear evolution equations governed by**-quasi-dissipative operators*, Nonlinear Anal.**5**(1981), 449-468. MR**613054 (82i:34073)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
35Q20,
47H20,
58D25

Retrieve articles in all journals with MSC: 35Q20, 47H20, 58D25

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1986-0831403-1

Keywords:
Nonlinear dispersive equations,
long waves of small amplitude,
nonlinear evolution operators

Article copyright:
© Copyright 1986
American Mathematical Society