Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Points de continuité d'une fonction séparément continue


Author: Gabriel Debs
Journal: Proc. Amer. Math. Soc. 97 (1986), 167-176
MSC: Primary 54C05
MathSciNet review: 831408
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ f:X \times Y \to {\mathbf{R}}$ be a separately continuous function defined on the product of a Baire space $ X$ and a Hausdorff compact space $ Y$. We prove that $ f$ is jointly continuous at any point of $ G \times Y$, for a dense $ {G_\delta }$ subset $ G$ of $ X$, under one of the following assumptions: (i) If the Banach space $ \mathcal{C}(Y)$ is weakly $ \mathcal{K}$-analytic; or (ii) if $ X$ contains a dense subset which is $ \mathcal{K}$-analytic.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54C05

Retrieve articles in all journals with MSC: 54C05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1986-0831408-0
Keywords: Separate and joint continuity, Baire spaces, $ \mathcal{K}$-analytic sets, topological games
Article copyright: © Copyright 1986 American Mathematical Society