Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On a conjecture of Zassenhaus on torsion units in integral group rings. II


Authors: César Polcino Milies, Jürgen Ritter and Sudarshan K. Sehgal
Journal: Proc. Amer. Math. Soc. 97 (1986), 201-206
MSC: Primary 16A25; Secondary 11R33, 20C05
DOI: https://doi.org/10.1090/S0002-9939-1986-0835865-5
MathSciNet review: 835865
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Suppose that a group $ G$ has a normal subgroup $ C$ where $ C$ and $ G/C$ are cyclic of relatively prime orders. Then any torsion unit in $ ZG$ is rationally conjugate to a trivial unit.


References [Enhancements On Off] (What's this?)

  • [1] C. Polcino Milies and S. K. Sehgal, Torsion units in integral group rings of metacyclic groups, J. Number Theory 19 (1984), 103-114. MR 751167 (86i:16009)
  • [2] I. Reiner, Maximal orders, Academic Press, New York, 1975. MR 0393100 (52:13910)
  • [3] J. Ritter and S. K. Sehgal, On a conjecture of Zassenhaus on torsion units in integral group rings, Math. Ann. 264 (1983), 257-270. MR 711882 (85e:16014)
  • [4] -, Isomorphism of group rings, Arch. Math. 40 (1983), 32-39. MR 720891 (84k:16015)
  • [5] J. P. Serre, Linear representations of finite groups, Graduate Texts in Math., Vol. 42, Springer-Verlag, New York, 1977. MR 0450380 (56:8675)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16A25, 11R33, 20C05

Retrieve articles in all journals with MSC: 16A25, 11R33, 20C05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1986-0835865-5
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society