ON THE CLIFFORD INDEX OF ALGEBRAIC CURVES
EDOARDO BALLICO

ABSTRACT. Here we prove (over \mathbb{C}) that a general $(e+2)$-gonal algebraic curve of genus p has no g^r_d with $d \leq p-1$, $r \geq 2$ and $d - 2r \leq e$.

In this note we give the expected answer (yes) to a conjecture raised in [2, Conjecture 3.8]. The proof uses only the more elementary part of a theory introduced by D. Eisenbud and J. Harris in [4].

Let X be a smooth, connected, complete curve and L a line bundle on X. The Clifford index $\text{Cliff}(L)$ of L is defined by $\text{Cliff}(L) = \text{deg } L - 2(h^0(X, L) - 1)$. The Clifford index $\text{Cliff}(X)$ of X is defined by $\text{Cliff}(X) = \min\{ \text{Cliff}(L) : L \text{ is a line bundle on } X \text{ with } h^0(X, L) \geq 2 \text{ and } h^1(X, L) \geq 2 \}$. If X has genus p in the definition of $\text{Cliff}(X)$ we may use the condition “$\text{deg } L \leq p - 1$” instead of the condition “$h^1(X, L) \geq 2$”.

Fix an algebraically closed field k with $\text{ch}(k) = 0$. Here we prove the following result:

THEOREM. A general $(e+2)$-gonal curve X of genus $p \geq 2e+2$ has $\text{Cliff}(X) = e$. Furthermore X has no $g^{r+2} _{e+2}$ with $r \geq 2$ and $e + 2r \leq p - 1$.

PROOF. We use induction on the genus. By Brill and Noether’s theory [3] the induction starts for example at the genus $2e + 2$, when a curve with general moduli has a g^1_{d+2}. Assume the result for a general $(e+2)$-gonal curve of genus $p - 1$. Fix integers r, d with $r \geq 2$, $d \leq p - 1$ and $d - 2r \leq e$. Let P be a point of A at which a $g^{r+2} _{e+2}$ on A ramifies. Let E be an elliptic curve and $0 \in E$. Let Y be the union of A and E with the points P and 0 identified. By the theory of admissible covers by J. Harris and D. Mumford [5, Proof of Theorem 5.6, Corollary 4, p. 71], Y is in the closure in the moduli space of stable curves of genus p of the set of smooth $(e+2)$-gonal curves. Let B be a discrete valuation ring with closed point o and generic point t. Let $f: Z \to B$ be flat and proper with Z smooth, $f^{-1}(o) \cong Y$ and with $f^{-1}(t)$ an $(e+2)$-gonal smooth curve of genus p. By Lefschetz principle and the existence of $G^d _2$ on a suitable cover of the moduli space M_p, to obtain a contradiction we may assume that the geometric general fiber of f (i.e. the extension of $f^{-1}(t)$ over the algebraic closure of $k(t)$) has a $g^* _{d}$. Certainly this $g^* _{d}$ is defined over a finite extension of $k(t)$. As in [4, §2] we find $j \geq 0$ and a $g^* _{d}$ limit on a semistable curve Y' defined over k, Y' union of A, a chain of rational curves D_i, $1 \leq i \leq j$, and E, with $A \cap D _i = \emptyset$ if $i > 1$, $A \cap D _1 = \{ P \}$, $D _i \cap D _s = \emptyset$ if and only if $|i - j| \leq 1$, $\text{card}(D _i \cap D _{i+1}) = 1$ for $1 \leq i \leq j - 1$, $E \cap D _s = \emptyset$ if $s < j$, $E \cap D _j = \{ 0 \}$, $E \cap A = \emptyset$ (unless $j = 0$). If $j = 0$, set $Y' := Y$. By definition of a $g^* _{d}$ limit,
its existence implies the existence of a \(g^d_d \) on \(A \). If \(d \leq p - 2 \), this contradicts the inductive assumption and the choice of \(A \). If \(d = p - 1 \), we may assume that the associated line bundle \(L \) on \(A \) has no base point. By Riemann and Roch we have \(h^1(A, L) = r - 1 \), and if \(r \geq 3 \), we obtain a contradiction by duality and the inductive assumption. Hence we may assume \(r = 2 \), \(d = p - 1 \) and \(L \) base-point free. We obtain \(p - 1 - 4 \leq e \) and by the choice of \(p > 2e + 2 \) we find \(e \leq 2 \). The only cases to check are the cases with \(e = 0 \) or \(e = 1 \), \(g = 6 \) or \(e = 2 \), and \(g = 7 \), which are well known. If \(e = 0 \), \(A \) is hyperelliptic. If \(g = 6 \), a general 3-gonal curve has no \(g^2_6 \) (necessarily not composed with a pencil) by a dimensional count. If \(g = 7 \), a general 4-gonal curve \(A \) cannot have a \(g^2_6 \) which maps \(A \) birationally onto \(C \subset \mathbb{P}^2 \), \(\deg C = 6 \), because \(C \) can have only double points (\(A \) has no \(g^1_3 \)), hence it has at least 3 \(g^1_4 \), contradicting a theorem of E. Arbarello and M. Cornalba [1, Theorem 2.6]. If \(A \) has a \(g^2_6 \) which maps \(A \) nonbirationally onto \(C \subset \mathbb{P}^2 \), \(C \) must be elliptic and \(A \) elliptic-hyperelliptic; again \(A \) cannot have infinite \(g^1_4 \). \(\square \)

REFERENCES

DEPARTMENT OF MATHEMATICS, SCUOLA NORMALE SUPERIORE, 56100 PISA, ITALY

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use