Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

On the Clifford index of algebraic curves


Author: Edoardo Ballico
Journal: Proc. Amer. Math. Soc. 97 (1986), 217-218
MSC: Primary 14H45; Secondary 14C20
DOI: https://doi.org/10.1090/S0002-9939-1986-0835868-0
MathSciNet review: 835868
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Here we prove (over $ {\mathbf{C}}$) that a general $ (e + 2)$-gonal algebraic curve of genus $ p$ has no $ g_d^r$ with $ d \leq p - 1,r \geq 2$ and $ d - 2r \leq e$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 14H45, 14C20

Retrieve articles in all journals with MSC: 14H45, 14C20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1986-0835868-0
Keywords: Algebraic curve, Clifford index, linear series, reducible curve, gonality, line bundle, genus
Article copyright: © Copyright 1986 American Mathematical Society