ABSTRACT. We construct a sequence \(\{a_n\} \) of positive numbers such that
\(a_n \to 0, \sum |a_n - a_{n-1}| < \infty \), and the function \(f(z) = \sum a_n z^n \) is not a normal function. This answers a question raised by the second author (Proc. Amer. Math. Soc. 85 (1982), 335–341).

1. Introduction. Let \(D = \{z: |z| < 1\} \), \(C = \{z: |z| = 1\} \), and \(f(z) = \sum a_n z^n \) be a function analytic in \(D \). The function \(f \) is said to be a normal function if the family of functions \(\{f(z; a, \theta) = f(e^{i\theta}(z + a)/(1 + az)): a \in D, \theta \in [0, 2\pi)\} \) is a normal family in the sense of Montel, that is, each sequence of functions in the family contains a subsequence which converges uniformly on each compact subset of \(D \) either to an analytic function or to \(\infty \).

In [1], the second author proved the following criterion for normal functions.

Theorem L. Let \(\{a_n\} \) be a sequence of complex numbers such that both \(\sum_{n=1}^{\infty} |a_n - a_{n-1}| < \infty \) and \(a_n \to 0 \). Then \(\sum_{n=0}^{\infty} a_n z^n \) is a normal function.

In the same paper [1, Remark 2, p. 338] the question was raised as to whether Theorem L is valid if the condition “\(a_n \to 0 \)” is replaced by “\(a_n \to 0 \)” in a later paper [2, Theorem 2, p. 310] this question was answered in the negative by an example in which all the terms \(a_n \) were real numbers, but many of the terms \(a_n \) were negative. The purpose of this note is to present a basically different example to show that Theorem L is not valid even when the condition “\(a_n \to 0 \)” is replaced by the condition “\(a_n \to 0 \)” and \(a_n > 0 \) for each \(n \).”

Theorem. There exists a sequence \(\{a_n\} \) of positive numbers such that \(a_n \to 0, a_n > 0 \) for each \(n \), \(\sum |a_n - a_{n-1}| < \infty \), and the function \(f(z) = \sum a_n z^n \) is not a normal function.

Proof of the Theorem. Let \(N_0 = -1 \), let \(d = 2^{12} e^{6\pi} \), and let \(\{N_j: j = 1, 2, 3, \ldots\} \) be a sequence of positive integers, each of which is divisible by \(4 \), satisfying

\[
N_{j+1} > (1 + N_j)^2 \quad \text{for } j > 0 \text{ and } N_1 > d^4.
\]

Let \(\theta_j = 2\pi/N_j \) and \(r_j = 1 - \theta_j \) for \(j > 0 \). For each \(j > 0 \) and \(k \in \{2, 3, 4\} \), let

\[
C_{j,k} = \sum_{n=((K-1)N_j/4)+1}^{kN_j/4} r_j^n \cos(n\theta_j) \quad \text{and} \quad S_{j,k} = \sum_{n=((k-1)N_j/4)+1}^{kN_j/4} r_j^n \sin(n\theta_j).
\]
Further, let
\[C_1 = \sum_{n=0}^{N_1/4} N_1^{-1/2} r_1^n \cos(n\theta_1) \quad \text{and} \quad S_1 = \sum_{n=0}^{N_1/4} N_1^{-1/2} r_1^n \sin(n\theta_1), \]

let \(b_1 = -N_1^{1/2} C_1/C_{1,2} \) and for \(0 \leq n \leq N_1/4 \) let \(a_n = N_1^{-1/2} \). We claim that we can determine sequences \(\{a_n\}, \{b_j\}, \{x_j\}, \) and \(\{y_j\} \) which satisfy all of the following conditions (2), (3), (4), and (5) simultaneously:

\[
(2) \quad C_j = \sum_{n=0}^{N_j/4} a_n r_j^n \cos(n\theta_j) \quad \text{and} \quad S_j = \sum_{n=0}^{N_j/4} a_n r_j^n \sin(n\theta_j),
\]

(3) \[N_j^{1/2} C_j + b_j C_{j,2} = 0, \]

(4) \[
\begin{cases}
 x_j C_{j,3} + y_j C_{j,4} = 0, \\
 x_j S_{j,3} + y_j S_{j,4} = -(N_j^{1/2} S_j + b_j S_{j,2}),
\end{cases}
\]

(5) \[a_n = \begin{cases}
 N_j^{-1/2}, & \text{for } N_j - 1 + 1 \leq n \leq N_j/4, \\
 b_j N_j^{-1/2}, & \text{for } N_j/4 < n \leq N_j/2, \\
 x_j N_j^{-1/2}, & \text{for } N_j/2 < n \leq 3N_j/4, \\
 y_j N_j^{-1/2}, & \text{for } 3N_j/4 < n \leq N_j.
\end{cases} \]

We will show that we can define the terms in these sequences inductively. We have already defined \(b_1, a_n \) for \(0 \leq n \leq N_1/4 \), \(C_1, S_1 \), and (2), (3), and (5) are satisfied for these terms with \(j = 1 \). Now for each \(j \), (4) is a system of equations with the unknowns \(x_j \) and \(y_j \) for which the determinant of the coefficients, \(\Delta_j = C_{j,3} S_{j,4} - C_{j,4} S_{j,3} \), is positive, since each of these coefficients is negative except for \(C_{j,4} \), which is positive. Hence, if we assume that all terms in (4) are defined except for \(x_j \) and \(y_j \), we see that (4) determines a unique solution for \(x_j \) and \(y_j \). For \(j = 1 \), such a solution pair \(x_1 \) and \(y_1 \) exists. Now (5) defines \(a_n \) for \(0 \leq n \leq N_1 \).

Now suppose that \(b_k, x_k, \) and \(y_k \) are all known for all \(k < j \), and suppose that \(a_n \) is known for all \(n \leq N_j \). Then we can define \(a_n = N_j^{-1/2} \) for \(N_j + 1 \leq n \leq N_j + 1/4 \), which means that (2) now defines both \(C_{j+1} \) and \(S_{j+1} \), (3) determines \(b_{j+1} \), (4) determines both \(x_{j+1} \) and \(y_{j+1} \), and (5) defines \(a_n \) for \(0 \leq n \leq N_j + 1 \). Thus, we can proceed inductively to define the full sequences \(\{a_n\}, \{b_j\}, \{x_j\}, \) and \(\{y_j\} \).

Next, we claim both
\[
(6) \quad e^{-2\pi/80} < b_j < 4\pi e^{2\pi} \quad \text{for each } j,
\]

and
\[
(7) \quad 1/d < x_j < y_j < d \quad \text{for each } j.
\]

To prove these, we again proceed inductively. First, we remark that
\[
e^{-2\pi/2} < (1 - (2\pi/N_j))^N_j = (1 - \theta_j)^N_j \leq (1 - \theta_j)^n = r_j^n < 1 \]

for \(1 \leq n \leq N_j \). Also, we note the standard formulas
\[
\sum_{n=p}^{q} \cos n\theta = \frac{\sin((2q + 1)\theta/2) - \sin((2p - 1)\theta/2))}{2\sin \theta/2},
\]

\[
\sum_{n=p}^{q} \sin n\theta = \frac{\sin((2q + 1)\theta/2) - \sin((2p - 1)\theta/2))}{2\sin \theta/2}.
\]
and
\[
\sum_{n=p}^{q} \sin n\theta = \frac{\cos((2p-1)\theta/2) - \cos((2q+1)\theta/2)}{(2\sin \theta/2)},
\]
and also that \(1/\theta < 1/(2\sin \theta/2) < 2/\theta\) for \(0 < \theta < \pi/2\). Thus, letting \(\theta_j = \theta\) and letting \(p\) and \(q\) be consecutive multiples of \(N_j/4\), we obtain
\[
N_j e^{-2\pi/(4\pi)} < |C_{j,k}|, |S_{j,k}| < 2N_j/\pi \quad \text{for all } j \text{ and } k \in \{2, 3, 4\},
\]
and also \(N_1 e^{-2\pi/(4\pi)} < N_1^{1/2} S_1, N_1^{1/2} C_1 < 2N_1/\pi\). Thus, we have
\[
b_1 = -N_1^{1/2} C_1/C_{1,2} < 8e^{2\pi} < 4\pi^{2\pi}.
\]
Actually, it is easy to see that \(N_1^{1/2} C_1 > |C_{1,2}|\) by pairing cosine terms of equal absolute value, so \(b_1 > 1\). Thus, we have \(1 < b_1 < 4\pi^{2\pi}\). From (4) and Cramer's Rule, we have
\[
x_j = C_{j,4}(N_j^{1/2} S_j + b_j S_{j,2})/\Delta_j \quad \text{and} \quad y_j = -C_{j,3}(N_j^{1/2} S_j + b_j S_{j,2})/\Delta_j.
\]
Note also that \(|C_{j,3}| > C_{j,4}\), so \(0 < x_j < y_j\) for each \(j\). From (8), we have
\[
N_j^2 e^{-4\pi/(8\pi^2)} < \Delta_j < 8N_j^2/\pi^2 \quad \text{for each } j.
\]
It follows from (8) and (9) and the estimates on \(b_1\) that
\[
1/d < e^{-4\pi/64} < x_1 < y_1 < 32e^{4\pi(1 + 4\pi^{2\pi})} < d.
\]
To get estimates on \(b_j, x_j,\) and \(y_j\) for \(j > 1\), we proceed inductively. Suppose that (6) and (7) hold for all \(j < p\), where \(p > 1\). Then
\[
C_p = \sum_{n=0}^{N_p-1/4} a_n r_p^n \cos n\theta_p + \sum_{n=N_p/4}^{N_p/4} N_p^{-1/2} r_p^n \cos n\theta_p,
\]
and
\[
S_p = \sum_{n=0}^{N_p-1/4} a_n r_p^n \sin n\theta_p + \sum_{n=N_p/4}^{N_p/4} N_p^{-1/2} r_p^n \sin n\theta_p.
\]
By the inductive hypothesis, we have that \(a_n < d/N_1^{1/2}\) for all \(n \leq N_{p-1}\) and hence, using (1), we have
\[
\sum_{n=0}^{N_{p-1}} a_n < (N_{p-1} + 1)d/N_1^{1/2} < N_{p-1}/d.
\]
Further, using the same estimates that yielded (8) and noting that \(N_{p-1} < N_p/8\), we have
\[
(7/8) N_p^{1/2} e^{-2\pi/4\pi} < N_p^{-1/2} \sum_{n=N_p/4}^{N_p/4} r_p^n \cos n\theta_p < N_p^{-1/2} (2N_p/\pi) = 2N_p^{1/2}/\pi,
\]
and the same inequality is valid if \(\cos n\theta_p\) is replaced by \(\sin n\theta_p\). Thus, we have
\[
7N_p^{1/2} e^{-2\pi/32\pi} < C_p, S_p < (N_{p-1}/d) + (2N_p^{1/2}/\pi) < N_p^{1/2}.
\]
Now, from (3), (8), and (10), we have
\[e^{-2\pi/80} < 7e^{-2\pi/64} < b_p = -N_p^{1/2}C_p/C_{p,2} < 4\pi e^{2\pi} \]
and also, from (4), (8), (9), and (10) we have
\[1/d < e^{-4\pi/1280} < x_p < y_p < 16\pi(1 + 8e^{2\pi})e^{4\pi} < d. \]
Thus (6) and (7) are established.

To complete the proof, let \(f(z) = \sum a_nz^n \). We note that by (5), (6), and (7), we have \(a_n \geq 1/(dN_j^{1/2}) \) for \(N_{j-1} < n \leq N_j \), so
\[
\liminf_{x \to 1-} f(x) \geq \sum_{j=1}^{\infty} \sum_{n=N_j+1}^{N_{j+1}} 1/(dN_{j+1}^{1/2}) = (1/d) \sum_{j=1}^{\infty} (N_{j+1} - N_j)N_j^{-1/2}
\]
\[> (1/2d) \sum_{j=1}^{\infty} N_j^{1/2} = \infty. \]
Thus, \(f(z) \) has the radial limit \(\infty \) at \(z = 1 \). If \(f \) were a normal function, then \(f \) would have the angular limit \(\infty \) at \(z = 1 \) (see [3]). But let \(z_j = r_je^{i\theta_j} \), where \(r_j \) and \(\theta_j \) are defined as before for each \(j \). If we consider the triangle with vertices at \(1, z_j, \) and \(e^{i\theta_j} \), we see that \(|e^{i\theta_j} - z_j| = \theta_j \) and \(|e^{i\theta_j} - 1| = 2\sin(\theta_j/2) \) and the angle at the vertex \(e^{i\theta_j} \) is \((\pi - \theta_j)/2 \). Thus, we have that the sequence \(\{z_j\} \) approaches the point 1 at an angle close to \(\pi/4 \) from the radius, and so \(\{z_j\} \) approaches \(z = 1 \) nontangentially.

On the other hand, if we set \(f_p(z) = \sum_{n=0}^{N_p} a_nz^n \) and \(g_p(z) = f(z) - f_p(z) \), we have that both the real part of \(f_p(z) \) and the imaginary part of \(f_p(z) \) are zero as a result of (2), (3), (4), and (5). We claim that \(g_p(z_p) \) is uniformly bounded. For we have
\[
|g_p(z_p)| = \left| \sum_{n=N_p+1}^{\infty} a_nz_p^n \right| \leq (d/N_{p+1}^{1/2})(1/(1 - r_p))
\]
\[= (d/N_{p+1}^{1/2})(N_p/2\pi) < d/2\pi. \]
It follows that \(|f(z_j)| \leq d/2\pi \) for each \(j \). Thus \(f \) is not a normal function.

Finally, we note that both \(a_n \to 0 \) (since \(0 < a_n < d/N_j^{-1/2} \) for \(N_{j-1} < n \leq N_j \)) and
\[\sum_{n=1}^{\infty} |a_n - a_{n-1}| < \sum_{j=1}^{\infty} 4dN_j^{-1/2} < (4d) \sum_{j=1}^{\infty} (N_1^{-1/2})j < \infty, \]
since (1) implies that \(N_j > N_1^j \). This completes the proof of the Theorem.

REFERENCES

Institute of Mathematics, Academia Sinica, Taipei, Taiwan, China

Department of Mathematics, Michigan State University, East Lansing, Michigan 48824

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use