ON THE OSCILLATION OF ALMOST-PERIODIC STURM-LIOUVILLE OPERATORS WITH AN ARBITRARY COUPLING CONSTANT1
S. G. HALVORSEN AND A. B. MINGARELLI2

ABSTRACT. In this paper we characterize those (Bohr) almost periodic functions \(V \) on \(\mathbb{R} \) for which the Sturm-Liouville equations

\[-y'' + \lambda V(x)y = 0, \quad x \in \mathbb{R},\]

are oscillatory at \(\pm \infty \) for every real \(\lambda \neq 0 \), or, equivalently, for which there exists a real \(\lambda \neq 0 \) such that the equation has a positive solution on \(\mathbb{R} \).

1. Introduction. In the study of the disconjugacy domain \(D \) (see [4]) of a linear second order differential equation with two parameters \(\alpha, \beta \),

\[-y'' + (\alpha - \beta V(x))y = 0, \quad x \in \mathbb{R},\]

one is inevitably drawn into the important case when \(D \subseteq \{(\alpha, \beta): \alpha > 0\} \cup \{(0,0)\} \) which occurs, for example, when \(V \) is periodic and has mean value equal to zero, as in Hill's equation. We recall that the equation

\[-y'' + V(x)y = 0, \quad x \in \mathbb{R},\]

is said to be disconjugate on \(\mathbb{R} \) provided every one of its (nonidentically zero) solutions has at most one zero in \((-\infty, \infty) \). This is equivalent to the fact that there exists a solution \(y(x) > 0 \) for \(x \in \mathbb{R} \). \(D \) is then the collection of \((\alpha, \beta) \in \mathbb{R}^2 \) for which (1.1) is disconjugate on \(\mathbb{R} \). If \(D \) is contained in the right-half plane of the parameter space \(\mathbb{R}^2 \), as above, it follows that

\[-y'' + \lambda V(x)y = 0\]

is oscillatory (at both ends \(\pm \infty \)) for every real \(\lambda \neq 0 \). General conditions on \(V \) for which this behavior is realized may be found in our recent monograph [3]. The case when \(V \) is a (Bohr) almost periodic function was considered by Markus and Moore [4]. In this case we show that it is possible to characterize those almost-periodic \(V \) for which (1.2) is oscillatory at \(\pm \infty \) for every real \(\lambda \neq 0 \). The results used to obtain this characterization are drawn from oscillation theory, in particular, results of Moore [5] and Wintner [7] are central to our investigations. A by-product of our techniques is that various classes of generalized almost-periodic functions such as those considered by Weyl and Besicovitch (see [1] for more details) can also be treated.

1Received by the editors October 29, 1984.

1980 Mathematics Subject Classification (1985 Revision). Primary 34C10.

1This paper was presented at the International Conference on the Qualitative Theory of Differential Equations, University of Alberta, Edmonton, Canada, June 18, 1984.

2This research is supported in part by grant U0167 from the Natural Sciences and Engineering Research Council of Canada.
2. Basic results and terminology. In the sequel, \(M\{V(x)\} \) will denote the mean-value of an almost periodic function,

\[
M\{V(x)\} = \lim_{T \to \infty} \frac{1}{T} \int_0^T V(s) \, ds.
\]

We recall that a.p. functions have a mean value that is uniform, in the sense that

\[
M\{V(x)\} = \lim_{T \to \infty} \frac{1}{T} \int_a^{a+T} V(s) \, ds
\]

uniformly for \(a \in \mathbb{R} \) (see [1, 2]). For a given \(V, v \) will denote some, generally unspecified, indefinite integral of \(V \).

3. The main theorem.

Theorem 3.1. Let \(V \neq 0 \) be an almost periodic function. Then a necessary and sufficient condition for (1.2) to be oscillatory at \(\pm \infty \) for every real \(\lambda \neq 0 \) is that \(M\{V(x)\} = 0 \).

Corollary 3.2. The following statements are equivalent:

(i) The equation (1.2) is oscillatory at \(\pm \infty \) for every real \(\lambda \neq 0 \).

(ii) These exist finite numbers \(\lambda^+ > 0 \) and \(\lambda^- < 0 \), such that (1.2) is oscillatory at \(\pm \infty \) for every \(\lambda \in (\lambda^-, \lambda^+) \), \(\lambda \neq 0 \).

(iii) \(M\{V(x)\} = 0 \).

Proof. That (i)\(\iff\)(iii) and (i)\(\implies\)(ii) is clear. That (ii)\(\implies\)(i) follows from the convexity of the disconjugacy domain [4].

The case \(V \) purely periodic with \(M\{V(x)\} = 0 \) of Theorem 3.1 can be found in Staněk [6]. However, this case actually follows directly from [4, Theorems 2 and 6].

Proof of Theorem 3.1 (Sufficiency). This was essentially shown in [4, Theorem 2]. Another proof may also be found in W. Coppel’s monograph *Disconjugacy* [Theorem 14].

(Necessity). We will show that whenever \(M\{V(x)\} \neq 0 \), there exists a value of \(\lambda \in \mathbb{R}, \lambda \neq 0 \), for which (1.2) is disconjugate on \(\mathbb{R} \). It will follow from this that (1.2) will be oscillatory for every real \(\lambda \neq 0 \), only if \(M\{V(x)\} = 0 \).

To this end let \(M\{V(x)\} = m \neq 0 \) and consider the single differential equation in the two real parameters \(\mu, \nu \):

\[
y'' + (-\nu + \mu V(x))y = 0
\]

on \([0, \infty)\). (Note that nonoscillation on \([0, \infty)\) implies disconjugacy on \([0, \infty)\) and so on \((-\infty, \infty)\) by results in [4].) Then (3.1) may be rewritten as

\[
y'' + (-\alpha + \beta V^*(x))y = 0,
\]

where \(\beta = \mu, \alpha = \nu - m\mu \) and \(M\{V^*(x)\} = 0 \). (Let \(\alpha > 0, \beta \neq 0 \).) We now make the transformation \(y = z \exp(-x\sqrt{\alpha}) \) and \(t = (1/2\sqrt{\alpha}) \exp(2\sqrt{\alpha}x) \). This leads us to the equation

\[
z'' + \beta e^{-4\sqrt{\alpha}x}V(x)z = 0
\]
and \(f(t) = \beta V(x) \exp(-4\sqrt{\alpha}x) \). The \(x \)-interval \((-\infty, \infty)\) goes into the half-axis, \([0, \infty)\). Now, (rewriting \(V \) for \(V^* \)),

\[
(3.3) \quad \int_t^\infty f(x) \, ds = \frac{\beta e^{2\sqrt{\alpha}x}}{2\sqrt{\alpha}} \int_x^\infty V(x) \exp(-2\sqrt{\alpha}s) \, ds
\]

\[
= \frac{\beta}{2\sqrt{\alpha}} \int_0^\infty e^{-2\sqrt{\alpha}\tau} V(x + \tau) \, d\tau = \beta \int_0^\infty e^{-2\sqrt{\alpha}\tau} \int_0^\tau V(x + s) \, ds \, d\tau
\]

\[
= \beta \int_0^\infty \tau e^{-2\sqrt{\alpha}\tau} \left[\frac{1}{\tau} \int_0^\tau V(x + s) \, ds \right] \, d\tau
\]

\[
= \beta \int_0^\infty \tau e^{-2\sqrt{\alpha}\tau} \left[\frac{1}{\tau} \int_0^{x+\tau} V(s) \, ds \right] \, d\tau.
\]

(note that both the first two integrals converge since \(V \) is bounded). Since \(M\{V(x)\} = 0 \) and \(V \) is a.p., then for every \(\varepsilon > 0 \) there exists \(\tau_0(\varepsilon) > 0 \) for which

\[
(3.4) \quad \sup_{x \in \mathbb{R}} \left| \frac{1}{\tau} \int_x^{x+\tau} V(s) \, ds \right| \leq \varepsilon
\]

for \(\tau \geq \tau_0 \) [2, p. 44]. Thus let \(T > 0 \) and rewrite (3.3) as an integral over \([0, T]\) plus an integral over \([T, \infty)\). Then

\[
(3.5) \quad \left| \int_0^\infty \tau e^{-2\sqrt{\alpha}\tau} \left[\frac{1}{\tau} \int_x^{x+\tau} V(s) \, ds \right] \, d\tau \right| \leq M \int_0^T \tau e^{-2\sqrt{\alpha}\tau} \, d\tau
\]

as it is certainly the case that the integral appearing in the square parentheses is bounded, by \(M = M(T) \) say, as it is a continuous function of \(\tau \in [0, T] \). (Note that \(\sup\{M(T): T \geq 0\} < \infty \) on account of (3.4).) Moreover, since \(M\{V(x)\} = 0 \) we have

\[
(3.6) \quad \left| \int_T^\infty \tau e^{-2\sqrt{\alpha}\tau} \left[\frac{1}{\tau} \int_x^{x+\tau} V(s) \, ds \right] \, d\tau \right| \leq \sup_{\tau \in [T, \infty)} \left| \frac{1}{\tau} \int_x^{x+\tau} V(s) \, ds \right| \cdot \int_T^\infty \tau e^{-2\sqrt{\alpha}\tau} \, d\tau
\]

\[
\leq \varepsilon(T) \int_T^\infty \tau e^{-2\sqrt{\alpha}\tau} \, d\tau.
\]

Combining the estimates (3.5), (3.7) and writing \(K = 2\sqrt{\alpha}T \) we obtain

\[
(3.8) \quad \left| t \int_t^\infty f(s) \, ds \right| \leq \frac{M|\beta|}{4\alpha} \left[1 - (K + 1)e^{-K} \right] + \frac{\varepsilon|\beta|}{4\alpha} (K + 1)e^{-K}
\]

\[
\leq \frac{|\beta|}{4\alpha} \left\{ \frac{M}{2} K^2 + \varepsilon(T) \right\}.
\]

We may now let \(T \to \infty \) in such a way that \(T = O(\alpha^{-1/2}) \) as \(\alpha \to 0^+ \). Then, the uniformity of the mean value (3.4) will imply that \(\varepsilon(t) \to 0 \) uniformly in \(x \) (see (3.6)). Moreover we will also have \(K \to 0 \) (as \(\alpha \to 0^+ \)).

Hence if \(\alpha > 0 \) is sufficiently small we see that

\[
(3.9) \quad \frac{|\beta|}{4\alpha} \left\{ \frac{M}{2} K^2 + \varepsilon(T) \right\} \leq \frac{1}{4}.
\]
i.e., if $|\beta| \leq \alpha \Psi(\alpha)$, where $\Psi(\alpha) = \{MK^2/2 + \varepsilon(T)\}^{-1}$ for an appropriately large T which we then fix, then (3.2) will be nonoscillatory (and so disconjugate) on $[0, \infty)$ on account of [5, Theorem 6; 7], i.e., (3.2) will be disconjugate on $(-\infty, \infty)$. It follows from (3.10) that the disconjugacy domain just touches the β-axis at the origin, and at $(0,0)$ we have a vertical tangent!

We now return to (3.2). Assume $m > 0$. We set $\nu = 0$ in (3.1), i.e., $\alpha = -m \mu = -m \beta$ in (3.2). Then from the preceding discussion it follows that the line $\alpha + m \beta = 0$ must intersect the disconjugacy domain of (3.2) for some $\alpha > 0$ and some range of negative β's, say, $0 > \beta \geq \beta_0$. Similarly if $m < 0$, we may find such a range of positive β's, $0 < \beta \leq \beta_1$. In either case there exists $\mu \neq 0$ for which (3.1) (with $\nu = 0$) is disconjugate on \mathbb{R}. This completes the proof of the necessity and of the theorem.

REMARK. The proof of the necessity shows that the disconjugacy domain of an equation (3.2) with V^* a.p. and $M\{V^*(x)\} = 0$ has a (boundary with a) vertical tangent at $(0,0)$ and lies completely in the right half-plane $\{\alpha > 0\} \cup \{(0,0)\}$. This extends a corresponding result of Markus and Moore [4, p. 106, Theorem 6] wherein it is further assumed that $v(x)$ (defined earlier) is also a.p. Furthermore the necessity merely required the uniformity of the mean-value of V and consequently holds for potentials which may not be a.p. For example Stepanoff, Weyl/Besicovitch a.p. functions inherit this property as well as many other (nongeneralized a.p.) functions.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TRONDHEIM, N.T.H. 7034 TRONDHEIM, NORWAY

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OTTAWA, OTTAWA, ONTARIO K1N 6N5, CANADA