Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A Poincaré-type inequality for solutions of elliptic differential equations


Author: William P. Ziemer
Journal: Proc. Amer. Math. Soc. 97 (1986), 286-290
MSC: Primary 35B45; Secondary 35J15, 35J60, 35R45
DOI: https://doi.org/10.1090/S0002-9939-1986-0835882-5
MathSciNet review: 835882
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A sharpened version of the Poincaré inequality is shown to hold for solutions of a large class of second order elliptic equations.


References [Enhancements On Off] (What's this?)

  • [AS] S. Axler and A. L. Shields, Univalent multipliers of the Dirichlet space, Michigan Math. J. 32 (1985), 65-80. MR 777302 (86c:30043)
  • [DBT] E. DiBenedetto and N. S. Trudinger, Harnack inequalities for quasi-minima of variational integrals, Australian National Univ. Research report, 1984.
  • [GT] D. Gilbarg and N. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Springer-Verlag, New York, 1983. MR 737190 (86c:35035)
  • [JS] I. Johnstone and M. Shahshahani, A Poincaré-type inequality for solutions of linear elliptic equations, with statistical applications, preprint, 1984.
  • [MZ] N. G. Meyers and W. P. Ziemer, Integral inequalities of Poincaré and Wirtinger type for BV functions, Amer. J. Math. 99 (1977), 1345-1360. MR 0507433 (58:22443)
  • [ME] Norman G. Meyers, Integral inequalities of Poincaré and Wirtinger type, Arch. Rational Mech. Anal. 68 (1978), 113-120. MR 0493308 (58:12336)
  • [P] J. Polking, Approximation in $ L$ by solutions of elliptic partial differential equations, Amer. J. Math. 94 (1972), 1231-1244. MR 0324215 (48:2567)
  • [S] J. Serrin, Local behavior of solutions of quasilinear equations, Acta Math. 111 (1964), 247-302. MR 0170096 (30:337)
  • [T] N. S. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic equations, Comm. Pure Appl. Math. 20 (1967), 721-747. MR 0226198 (37:1788)
  • [Z] W. P. Ziemer, Mean values of subsolutions of elliptic and parabolic equations, Trans. Amer. Math. Soc. 279 (1983), 555-568. MR 709568 (85j:35040)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 35B45, 35J15, 35J60, 35R45

Retrieve articles in all journals with MSC: 35B45, 35J15, 35J60, 35R45


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1986-0835882-5
Keywords: Poincaré inequality, elliptic equations
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society