Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A new inequality for complex-valued polynomial functions

Author: Themistocles M. Rassias
Journal: Proc. Amer. Math. Soc. 97 (1986), 296-298
MSC: Primary 30A10; Secondary 30C10
MathSciNet review: 835884
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {f_1},{f_2}, \ldots ,{f_n}:{\mathbf{C}} \to {\mathbf{C}}$ be complex-valued polynomial functions of degrees $ {d_1},{d_2}, \ldots ,{d_n}$, respectively, of a complex variable $ z$. Then

$\displaystyle {M_{{f_1}}}{M_{{f_2}}} \cdots {M_{{f_n}}} \geq {M_{{f_1}{f_2} \cdots {f_n}}} \geq k{M_{{f_1}}}{M_{{f_2}}} \cdots {M_{{f_n}}}$


$\displaystyle k = {\left( {\sin \frac{2}{n}\frac{\pi } {{8{d_1}}}} \right)^{{d_... ...d_2}}} \cdots {\left( {\sin \frac{2}{n}\frac{\pi }{{8{d_n}}}} \right)^{{d_n}}}.$

References [Enhancements On Off] (What's this?)

  • [1] Th. M. Rassias, On the derivative of a complex valued function, Bull. Inst. Math. Acad. Sinica 12 (1984), 423-425. MR 794413 (86g:30022)
  • [2] G. M. Rassias, J. M. Rassias, and Th. M. Rassia, A counterexample to a conjecture by P. Erdös, Proc. Japan Acad. Sci. Ser. A 53 (1977), 119-121. MR 0457687 (56:15891)
  • [3] S. Smale, On the efficiency of algorithms of analysis, Bull. Amer. Math. Soc. (N.S.) 13 (1985), 87-121. MR 799791 (86m:65061)
  • [4] -, The fundamental theorem of algebra and complexity theory, Bull. Amer. Math. Soc. (N.S.) 4 (1981), 1-36. MR 590817 (83i:65044)
  • [5] M. J. Todd, Polynomial expected behavior of a privoting algorithm for linear complementary and linear programming problems, Technical Rep. No. 595, School of Operations Research and Industrial Engineering, Cornell Univ., Ithaca, N. Y., 1983.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30A10, 30C10

Retrieve articles in all journals with MSC: 30A10, 30C10

Additional Information

Keywords: Complex polynomial function, connected subset, length, inequalities
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society