A new inequality for complex-valued polynomial functions

Author:
Themistocles M. Rassias

Journal:
Proc. Amer. Math. Soc. **97** (1986), 296-298

MSC:
Primary 30A10; Secondary 30C10

DOI:
https://doi.org/10.1090/S0002-9939-1986-0835884-9

MathSciNet review:
835884

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be complex-valued polynomial functions of degrees , respectively, of a complex variable . Then

**[1]**Th. M. Rassias,*On the derivative of a complex valued function*, Bull. Inst. Math. Acad. Sinica**12**(1984), 423-425. MR**794413 (86g:30022)****[2]**G. M. Rassias, J. M. Rassias, and Th. M. Rassia,*A counterexample to a conjecture by P. Erdös*, Proc. Japan Acad. Sci. Ser. A**53**(1977), 119-121. MR**0457687 (56:15891)****[3]**S. Smale,*On the efficiency of algorithms of analysis*, Bull. Amer. Math. Soc. (N.S.)**13**(1985), 87-121. MR**799791 (86m:65061)****[4]**-,*The fundamental theorem of algebra and complexity theory*, Bull. Amer. Math. Soc. (N.S.)**4**(1981), 1-36. MR**590817 (83i:65044)****[5]**M. J. Todd,*Polynomial expected behavior of a privoting algorithm for linear complementary and linear programming problems*, Technical Rep. No. 595, School of Operations Research and Industrial Engineering, Cornell Univ., Ithaca, N. Y., 1983.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
30A10,
30C10

Retrieve articles in all journals with MSC: 30A10, 30C10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1986-0835884-9

Keywords:
Complex polynomial function,
connected subset,
length,
inequalities

Article copyright:
© Copyright 1986
American Mathematical Society