Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A metric form of microtransitivity


Author: Aarno Hohti
Journal: Proc. Amer. Math. Soc. 97 (1986), 331-338
MSC: Primary 54H15; Secondary 54E35
DOI: https://doi.org/10.1090/S0002-9939-1986-0835893-X
MathSciNet review: 835893
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that every homogeneous compact metrizable space $ X$ has a compatible metric for which $ X$ is Lipschitz homogeneous and for which the group $ L(X)$ of Lipschitz homeomorphisms of $ X$ acts Lipschitz microtransitively on $ X$.


References [Enhancements On Off] (What's this?)

  • [1] F. D. Ancel, A proof and some applications of a theorem of E. G. Effros (preprint).
  • [2] E. G. Effros, Transformation groups and $ {C^*}$-algebras, Ann. of Math. (2) 81 (1965), 38-55. MR 0174987 (30:5175)
  • [3] C. L. Hagopian, Homogeneous plane continua, Houston J. Math. 1 (1975), 35-44. MR 0383369 (52:4250)
  • [4] -, Indecomposable homogeneous plane continua are hereditarily indecomposable, Trans. Amer. Math. Soc. 224 (1976), 339-350. MR 0420572 (54:8586)
  • [5] A. Hohti, On Lipschitz homogeneity of the Hilbert cube, Trans. Amer. Math. Soc. 291 (1985), 75-86. MR 797046 (87f:54044)
  • [6] A. Hohti and H. Junnila, A note on homogeneous metrizable spaces, Houston J. Math. (to appear). MR 904953 (89a:54037)
  • [7] F. B. Jones, Use of a new technique in homogeneous continua, Houston J. Math. 1 (1975), 57-61. MR 0385819 (52:6678)
  • [8] W. Lewis, Almost chainable homogeneous continua are chainable, Houston J. Math. 7 (1981), 373-377. MR 640978 (83a:54044)
  • [9] -, Homogeneous tree-like continua, Proc. Amer. Math. Soc. 82 (1981), 470-472.
  • [10] J. K. Phelps, Homogeneity and groups of homeomorphisms, Topology Proc. 6 (1981), 371-404. MR 672469 (83j:54030)
  • [11] J. T. Rogers, Jr., Decompositions of homogeneous continua, Pacific J. Math. 99 (1982), 137-144. MR 651491 (83c:54045)
  • [12] W. Sierpinski, Sur une propriété topologique des ensembles dénombrables denses en soi, Fund. Math. 1 (1920), 11-16.
  • [13] G. S. Ungar, On all kinds of homogeneous spaces, Trans. Amer. Math. Soc. 121 (1975), 393-400. MR 0385825 (52:6684)
  • [14] -, Countable dense homogeneity and $ n$-homogeneity, Fund. Math. 99 (1978), 155-160. MR 0482626 (58:2685)
  • [15] J. Väisälä, Lipschitz homeomorphisms of the Hilbert cube, Topology Appl. 11 (1980), 103-110. MR 550877 (81d:54024)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54H15, 54E35

Retrieve articles in all journals with MSC: 54H15, 54E35


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1986-0835893-X
Keywords: Homogenous, Lipschitz homeomorphism, homeomorphism group
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society