Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On supercomplete spaces. III

Author: Aarno Hohti
Journal: Proc. Amer. Math. Soc. 97 (1986), 339-342
MSC: Primary 54E15
MathSciNet review: 835894
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that for each positive integer $ n$ there is a fine uniform space $ X$, topologically a subspace of the real line, such that $ {X^n}$ is supercomplete, but $ {X^{n + 1}}$ is not supercomplete. The space $ X$ can also be chosen so that that $ {X^n}$ is supercomplete for all $ n \in N$, but the countably infinite power $ {X^N}$ is not supercomplete.

References [Enhancements On Off] (What's this?)

  • [1] S. Ginsberg and J. Isbell, Some operators on uniform spaces, Trans. Amer. Math. Soc. 93 (1959), 145-168. MR 0112119 (22:2977)
  • [2] A. Hohti, On supercomplete spaces. II (preprint). MR 835894 (88i:54019b)
  • [3] M. Hušek and J. Pelant, Products and uniform spaces (manuscript).
  • [4] M. Hušek and M. Rice, Uniform spaces (manuscript).
  • [5] J. Isbell, Supercomplete spaces, Pacific J. Math. 12 (1962), 287-290. MR 0156311 (27:6235)
  • [6] -, Uniform spaces, Math. Surveys, no. 12, Amer. Math. Soc., Providence, R. I., 1964. MR 0170323 (30:561)
  • [7] T. Przymusiński, On the notion of $ n$-cardinality, Proc. Amer. Math. Soc. 69 (1978), 333-338. MR 0491191 (58:10456)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54E15

Retrieve articles in all journals with MSC: 54E15

Additional Information

Keywords: Supercomplete, locally fine coreflection, fine space, $ n$-cardinality
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society