EXTENSION OF CONTINUOUS FUNCTIONS INTO UNIFORM SPACES

SALVADOR HERNÁNDEZ

ABSTRACT. Let X be a dense subspace of a topological space T, let Y be a uniformizable space, and let f: X → Y a continuous map. In this paper we study the problem of the existence of a continuous extension of f to the space T. Thus we generalize basic results of Taimanov, Engelking and Blefko-Mrówka on extension of continuous functions. As a consequence, if D is a nest generated intersection ring on X, we obtain a necessary and sufficient condition for the existence of a continuous extension to v(X, D), of a continuous function over X, when the range of the map is a uniformizable space, and we apply this to realcompact spaces. Finally, we suppose each point of T\X has a countable neighbourhood base, and we obtain a generalization of a theorem by Blair, herewith giving a solution to a question proposed by Blair.

In the sequel the word space will designate a topological space. By µX we shall denote a uniform space, µ being a collection of covers in the sense of Tukey [13] and Isbell [10]. γµX will mean the completion of the space µX. Let µ be a uniformity on X and let m be an infinite cardinal number, then µ_m will denote the uniformity on X generated by the µ-covers of power < m (we only consider µ and m for which µ_m is definable; see [6, 10 and 14]). The compact uniform space γµ_{ro}X is called the Samuel compactification of µX, denoted by sµX. By τµX we shall denote the set X equipped with the µ-uniform topology. We say that E and D subsets of X are µ-separated when E is far from D in the proximity defined by µ.

By a base on a space X we mean a nest generated intersection ring (or equivalently, a strong delta normal base) in X [1 and 10]. It is known that each base D on X has associated a Wallman compactification W(X, D) and a Wallman real-compactification v(X, D). If µX is a uniform space, we shall denote by Z(µX) the base on τµX formed by uniform zero-sets (see [7 and 8]), v(µX) will denote the space v(X, Z(µX)) and β(µX) the space W(X, Z(µX)).

Let T be a space and suppose X ⊆ T. If m is a cardinal number, we say that X is m-dense in T when for every family {Ui: i ∈ I}, with |I| < m, of nonvoid open sets in T such that \(\bigcap \{U_i: i \in I\} \neq \emptyset \), it follows that \(\bigcap \{U_i \cap X: i \in I\} \neq \emptyset \). If A is a subset of T, we define the m-closure of A in T as the union of all subspaces of T in which A is m-dense.

The following result generalizes the Taimanov theorem [12] of extension of continuous functions into compact spaces.

Theorem 1. Let T be a space in which X is m-dense, let µY be a uniform space, and let f: X → τµY a continuous map. Then the following are equivalent:

(a) f has a continuous extension \(f: T \to \tau \gamma \mu_m Y \).

Received by the editors December 14, 1984 and, in revised form, June 28, 1985.

1980 Mathematics Subject Classification. Primary 54C20, 54C30, 54D60.

©1986 American Mathematical Society

0002-9939/86 $1.00 + $.25 per page
Salvador Hernández

(b) For every pair E and D of subsets of Y which are μ-separated, we have that $\text{cl}_T f^{-1}(E) \cap \text{cl}_T f^{-1}(D) = \emptyset$, i.e., $f^{-1}(E)$ and $f^{-1}(D)$ have disjoint closures in T.

Proof. (a)⇒(b). This is clear.

(b)⇒(a). Let $p \in T \setminus X$ and let \mathcal{F}_p be the trace on X of the neighbourhood filter of p. In order to prove that there is a continuous extension of f, it is sufficient with showing that the filter generated by $f(\mathcal{F}_p) = \{f(F) : F \in \mathcal{F}_p\}$ is a Cauchy filter in $\mu_m Y$. Let $\mathcal{U} \in \mu_m$ arbitrary and consider $\mathcal{V} \in \mu_m$ a star-refinement of \mathcal{U}. Since $|\mathcal{V}| < m$ and X is m-dense in T, there is $V_0 \in \mathcal{V}$ with $f(F) \cap V_0 \neq \emptyset$ for every $F \in \mathcal{F}_p$. If not, let $\mathcal{V} = \{V_i : i \in I\}$ with $|I| < m$; for every $i \in I$ there is $F_i \in \mathcal{F}_p$ such that $f(F_i) \cap V_i = \emptyset$. As $\bigcup \{V_i : i \in I\} = Y$, it follows that $\bigcap \{f(F_i) : i \in I\} = \emptyset$ and, consequently, $\bigcap \{F_i : i \in I\} = \emptyset$, which is a contradiction.

Now let us see that there is $F_0 \in \mathcal{F}_p$ such that $f(F_0) \subseteq \text{st}(V_0, \mathcal{V})$, i.e., $f(F_0)$ is contained in the star of V_0 with respect to \mathcal{V}. Let us suppose that, for every $F \in \mathcal{F}_p$, $f(F) \cap (Y \setminus \text{st}(V_0, \mathcal{V})) \neq \emptyset$. Then we can define the following two sets: $A = \bigcup \{f(F) \cap V_0 : F \in \mathcal{F}_p\}$ and $B = \bigcup \{f(F) \setminus \text{st}(V_0, \mathcal{V}) : F \in \mathcal{F}_p\}$. We have that $A \subseteq V_0$ and $B \cap \text{st}(V_0, \mathcal{V}) = \emptyset$. This shows that A and B are μ-separated. However, $p \in \text{cl}_T f^{-1}(A) \cap \text{cl}_T f^{-1}(B)$, which is a contradiction.

Thus there exists $F_0 \in \mathcal{F}_p$ with $f(F_0) \subseteq \text{st}(V_0, \mathcal{V})$. Since \mathcal{V} is a star-refinement of \mathcal{U}, there is $U_0 \in \mathcal{U}$ such that $f(F_0) \subseteq U_0$. This proves that the filter generated by $f(\mathcal{F}_p)$ is a Cauchy filter in $\mu_m Y$.

Corollary 2. Let μX be a uniform space. Then $\tau_{\gamma \mu_m} X$ contains the m-closure of $\tau\mu X$ in $\tau_{\mu_m} X$.

Proof. Let T be the m-closure of $\tau\mu X$ in $\tau_{\mu_m} X$, and consider $f : \tau\mu X \rightarrow \tau\mu X$ the identity map. By applying Theorem 1 there is a continuous extension $\bar{f} : T \rightarrow \tau_{\gamma \mu_m} X \subseteq \tau_{\mu_m} X$. Let $g : \tau_{\mu_m} X \rightarrow \tau_{\mu_m} X$ be the identity map and consider $g_{|T} : T \rightarrow \tau_{\mu_m} X$. As \bar{f} and $g_{|T}$ coincide in a dense subspace of T, it follows that $\bar{f} = g_{|T}$. Therefore, \bar{f} is the identity map and $T \subseteq \tau_{\gamma \mu_m} X$.

Corollary 3. Let μ_1 and μ_2 be two separable (see [8]) uniformities on a space X and suppose that $\tau\mu_i X$ is Q-dense (\mathcal{N}_1-dense) in $\tau_{\gamma \mu_i} X$, for $i = 1, 2$. Then $\tau_{\gamma \mu_1} X = \tau_{\gamma \mu_2} X$ if and only if for every pair E and D of subsets of X which are μ_i-separated, $\text{cl}_{\tau_{\gamma \mu_1} X} E \cap \text{cl}_{\tau_{\gamma \mu_2} X} D = \emptyset$ for $i \neq j$, $1 \leq i, j \leq 2$.

Proof. The proof is clear by taking $f : \tau\mu_i X \rightarrow \tau\mu_j X$ as the identity map in Theorem 1, for $i \neq j$, $1 \leq i, j \leq 2$.

The following result generalizes [5, Theorem 2 and 3, Theorem C].

Theorem 4. Let T be a space in which X is dense, let μY be a uniform space, and let $f : X \rightarrow \tau\mu Y$ be a continuous map. Then f has a continuous extension $\bar{f} : T \rightarrow \tau_{\gamma \mu_m} Y$ if and only if

(a) For every pair E and D of subsets of Y which are μ-separated, we have that $\text{cl}_T f^{-1}(E) \cap \text{cl}_T f^{-1}(D) = \emptyset$.

(b) If $\{F_i : i \in I\}$, $|I| < m$, is a family of subsets of Y which has the finite intersection property and $\bigcap \{\text{cl}_{\tau_{\gamma \mu_m} Y} F_i : i \in I\} = \emptyset$, then $\bigcap \{\text{cl}_T f^{-1}(F_i) : i \in I\} = \emptyset$.

Proof. The necessity is clear.
Sufficiency. Consider \(f: X \to \tau \mu Y \). By condition (a) we can apply Theorem 1 for \(m = \aleph_0 \). So there is a continuous extension \(\tilde{f} : T - \tau \mu Y \). Now, suppose there is \(p \in T \setminus X \) such that \(\tilde{f}(p) \notin \tau \gamma \mu_m Y \). By Corollary 2, applied to \(\tau \gamma \mu_m Y \), we have that the \(m \)-closure of \(\tau \gamma \mu_m Y \) in \(\tau sU Y \) is \(\tau \gamma \mu_m Y \). Hence there is a family \(\{ V_i : i \in I \} \), \(|I| < m \), of closed neighbourhoods of \(\tilde{f}(p) \) in \(\tau sU Y \) such that \(\bigcap \{ V_i \cap (\tau \gamma \mu_m Y) : i \in I \} = \emptyset \). Consider the family of sets \(\{ V_i \cap (\tau \mu Y) : i \in I \} \). This family verifies the hypotheses of (b). However, \(p \in \bigcap \{ \text{cl} f^{-1}(V_i \cap (\tau \mu Y)) : i \in I \} \) which is a contradiction. This proves that \(f(T) \subseteq \tau \gamma \mu_m Y \).

From Theorem 1 the following result on spaces with bases is derived.

Theorem 5. Let \(\mu X \) and \(\nu Y \) be uniform spaces and let \(f: \tau \mu X \to \tau \nu Y \) be a continuous map. Then the following are equivalent:

(a) There is a continuous ext. \(\tilde{f} : \nu(\mu X) \to \tau \nu Y \).

(b) There is a continuous ext. \(\tilde{f} : \nu(\mu X) \to \beta(\nu Y) \).

(c) There is a continuous ext. \(\tilde{f} : \nu(\mu X) \to \nu Y \).

(d) If \(D \) and \(E \) are \(\nu \)-separated in \(Y \), then
\[
\text{cl}_{\nu(\mu X)} f^{-1}(D) \cap \text{cl}_{\nu(\mu X)} f^{-1}(E) = \emptyset.
\]

(e) If \(D \) and \(E \) are \(Z(\nu Y) \)-separated, then
\[
\text{cl}_{\nu(\mu X)} f^{-1}(D) \cap \text{cl}_{\nu(\mu X)} f^{-1}(E) = \emptyset.
\]

(f) If \(D \) and \(E \) are disjoint in \(\nu Y \), then
\[
\text{cl}_{\nu(\mu X)} f^{-1}(D) \cap \text{cl}_{\nu(\mu X)} f^{-1}(E) = \emptyset.
\]

Proof. (a)\(\iff\)(d). This is Theorem 1.

(c)\(\iff\)(e). This is a consequence of Theorem 1, by considering in \(Y \) the uniformity associated to the base \(Z(\nu Y) \) (see [7, 6.5(a)]).

(c)\(\iff\)(a), (b)\(\iff\)(f) and (f)\(\iff\)(e). These are clear.

(c)\(\iff\)(a). By [7, Theorem 4.2] \(\nu(\nu Y) \) is the \(Q \)-closure of \(\nu Y \) in \(\tau sU Y \).

(a)\(\iff\)(c). As \(\tau \mu X \) is \(Q \)-dense in \(\nu(\mu X) \), it follows that \(\tilde{f}(\nu(\mu X)) \subseteq \nu Y \).

Let \(X \) be a completely regular Hausdorff space. We denote by \(X' \) the set \(X \) endowed with the \(P \)-topology associated, i.e., the topology for which the collection of \(G_\delta \)-subsets of \(X \) forms an open base. If \(D \) is a base on \(X \), then by \(\sigma(D) \) we mean the \(\sigma \)-algebra of sets generated by \(D \). It is clear that \(\sigma(D) \) is a base on \(X' \).

The next proposition is an application to realcompact spaces of the results above.

Proposition 6. Let \(X \) be a realcompact space. If \(\tilde{X} \) is the set \(X \) endowed with a topology such that \(\tilde{X}' = X' \) and, for every pair \(E \) and \(D \) of disjoint Baire sets of \(X \), we have that
\[
\text{cl}_{\nu(\nu(X', \sigma(Z(\tilde{X}))))} E \cap \text{cl}_{\nu(\nu(X', \sigma(Z(\tilde{X}))))} D = \emptyset,
\]
then \(\tilde{X} \) is realcompact.

Proof. Let \(f: \tilde{X}' \to X' \) be the identity map. By Theorem 5, there is a continuous extension \(\tilde{f} : \nu(\tilde{X}; \sigma(Z(\tilde{X}))) \to \nu(X'; \sigma(Z(X))) \). Now, by [9, Theorem 16], \(\nu(X', \sigma(Z(X))) = X' \). Then \(\tilde{f}(\nu(X', \sigma(Z(\tilde{X})))) = X' \). Since \(f \) is a homeomorphism, it follows that \(\nu(\tilde{X}', \sigma(Z(\tilde{X}))) = \tilde{X}' \). Therefore \(\tilde{X} \) is realcompact, as a consequence of [9, Theorem 16].

We are informed by the referee that the following result has also been proved by Comfort and Retta in [4].
COROLLARY 7. Let X be a realcompact space, and let \tilde{X} be the set X endowed with a topology finer than the topology of X and such that $\tilde{X}' = X'$. Then \tilde{X} is also realcompact.

PROOF. Since $\sigma(Z(\tilde{X})) \supseteq \sigma(Z(X))$ we can apply Proposition 6.

In [2] Blair proved the following result.

THEOREM 8. Let X be a dense subspace of a topological space T, assume each $p \in T \setminus X$ has a countable base of neighbourhoods, let Y be a closed subspace of R, and let $f : X \to Y$ be continuous. Then the following are equivalent:

(a) f extends continuously over T.

(b) If F_1 and F_2 are disjoint countable closed subsets of Y, then $f^{-1}(F_1)$ and $f^{-1}(F_2)$ have disjoint closures in T.

Also Blair proposed in [2] the question of possible generalizations of Theorem 8 for Tychonoff spaces Y that are not necessarily closed subspaces of R. What follows is a solution to this question.

THEOREM 9. Let X be a dense subspace of T, assume each point $p \in T \setminus X$ has a countable base of neighbourhoods, let μY be a uniform space, and let $f : X \to \tau \mu Y$ be a continuous map. Then the following are equivalent:

(a) f has a continuous extension $\tilde{f} : T \to \tau \gamma \mu Y$.

(b) If F_1 and F_2 are countable subsets of Y which are μ-separated, then

$$\text{cl}_T f^{-1}(F_1) \cap \text{cl}_T f^{-1}(F_2) = \emptyset.$$
COROLLARY 10. Let X be a dense subspace of T, assume each $p \in T \setminus X$ has a countable base of neighbourhoods, let Y be a Tychonoff space, and let $f: X \to Y$ be a continuous map. Then the following are equivalent:

(a) f has a continuous extension $\overline{f}: T \to \nu Y$.

(b) If F_1 and F_2 are two countable subsets of Y which are completely separated by $C(Y)$, then $\text{cl}_T f^{-1}(F_1) \cap \text{cl}_T f^{-1}(F_2) = \emptyset$.

PROOF. The proof follows from Theorem 9 by considering in Y the weak uniformity generated by the real-valued continuous functions on Y.

COROLLARY 11. Let X be a dense subspace of T, assume each $p \in T \setminus X$ has a countable base of neighbourhoods, let Y be a first countable Tychonoff space, and let $f: X \to Y$ be a continuous map. Then the following are equivalent:

(a) f has a continuous extension $\overline{f}: T \to Y$.

(b) If F_1 and F_2 are two disjoint countable closed subsets of Y, then $\text{cl}_T f^{-1}(F_1) \cap \text{cl}_T f^{-1}(F_2) = \emptyset$.

PROOF. First we shall prove that if E and D are two subsets of Y which are completely separated, then $\text{cl}_T f^{-1}(E) \cap \text{cl}_T f^{-1}(D) = \emptyset$. Suppose there is $p \in \text{cl}_T f^{-1}(E) \cap \text{cl}_T f^{-1}(D)$ and consider $\{x_n: n \in \mathbb{N}\} \subseteq f^{-1}(E)$, $\{y_n: n \in \mathbb{N}\} \subseteq f^{-1}(D)$ with $\lim x_n = \lim y_n = p$. We are going to define a closed subset A of Y as follows: Take $A = \{f(x_n)\}$ if this set is closed in Y. If not, there is $z \in Y$ and a subsequence $\{f(x_{n_k})\}$ of $\{f(x_n)\}$ such that $\lim f(x_{n_k}) = z$. In this case we take $A = \{f(x_{n_k})\} \cup \{z\}$. In the same way we can define a closed subset B of Y from $\{f(y_n)\}$. Thus A and B are two disjoint countable closed subsets of Y with $\text{cl}_T f^{-1}(A) \cap \text{cl}_T f^{-1}(B) = \emptyset$, which is a contradiction. Therefore, $\text{cl}_T f^{-1}(E) \cap \text{cl}_T f^{-1}(D) = \emptyset$.

By Corollary 10 there is a continuous extension $\overline{f}: T \to \nu Y$. Suppose there is $p \in T \setminus X$ with $\overline{f}(p) \in \nu Y \setminus Y$. By hypothesis there is a sequence $\{x_n: n \in \mathbb{N}\} \subseteq X$, with $x_n \neq x_m$ if $n \neq m$, such that $\lim x_n = p$. Let $A = \{f(x_{2n})\}$ and $B = \{f(x_{2n+1})\}$. A and B are disjoint countable closed subsets of Y and $\text{cl}_T f^{-1}(A) \cap \text{cl}_T f^{-1}(B) = \emptyset$. This contradiction proves that $\overline{f}(T) \subseteq Y$.

EXAMPLE 12. In general, the space νY cannot be replaced by Y in Corollary 10.

Let X be a Tychonoff space such that there is a point $p \in \nu X \setminus X$ and a sequence $\{x_n\} \subseteq X$ with $\lim x_n = p$. Let \tilde{X} be the space X but take the point x_n as an open set for all $n \in \mathbb{N}$, and let $T = \tilde{X} \cup \{p\}$, where a base of neighbourhoods for p is given by the sets $V_m = \{x_n: n \geq m\}$, $m \in \mathbb{N}$. If we consider $f: \tilde{X} \to X$ as the identity map, then clearly f verifies condition (b) of Corollary 10. Thus f has a continuous extension $\overline{f}: T \to \nu X$ and $\overline{f}(p) = p \in \nu X \setminus X$.

EXAMPLE 13. The hypothesis of Corollary 11 that Y be a first countable space cannot be relaxed.

Let $X = N$, $T = N^*$ and $Y = \beta N$. If we consider the identity map $f: N \to \beta N$ then, since countable closed sets in βN are finite, we have that f verifies condition (b) of Corollary 11. However, f cannot be extended over T.

ACKNOWLEDGMENT. We thank the referee for his very valuable reflections and comments on a previous version of this paper.
REFERENCES

DEPARTAMENTO DE TEORÍA DE FUNCIONES, FACULTAD DE CIENCIAS MATEMÁTICAS, C/ DOCTOR MOLINER 50, BURJASOT, VALENCIA, SPAIN