Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Counterexample to the Lu Qi-Keng conjecture


Author: Harold P. Boas
Journal: Proc. Amer. Math. Soc. 97 (1986), 374-375
MSC: Primary 32H10; Secondary 32A07, 32H05
DOI: https://doi.org/10.1090/S0002-9939-1986-0835902-8
MathSciNet review: 835902
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: There exists a smooth bounded strongly pseudoconvex domain in $ {{\mathbf{C}}^2}$, smoothly equivalent to the ball, whose Bergman kernel function has zeroes.


References [Enhancements On Off] (What's this?)

  • [1] K. Azukawa, Square-integrable holomorphic functions on a circular domain in $ {{\mathbf{C}}^n}$, Tôhoku Math J. 37 (1985), 15-26. MR 778368 (86h:32002)
  • [2] R. E. Greene and S. G. Krantz, Stability properties of the Bergman kernel and curvature properties of bounded domains, Recent Developments in Several Complex Variables, Princeton Univ. Press, Princeton, N. J., 1981. MR 627758 (83d:32023)
  • [3] S. G. Krantz, Function theory of several complex variables, Wiley, New York, 1982. MR 635928 (84c:32001)
  • [4] Lu Qi-Keng, On Kaehler manifolds with constant curvature, Chinese Math. 8 (1966), 283-298; English transl. of Acta Math. Sinica 16 (1966), 269-281. MR 0206990 (34:6806)
  • [5] I. Ramadanov, Sur une propriété de la fonction de Bergman, C. R. Acad. Bulgare Sci. 20 (1967), 759-762. MR 0226042 (37:1632)
  • [6] P. Rosenthal, On the zeroes of the Bergman function in doubly-connected domains, Proc. Amer. Math. Soc. 21 (1969), 33-35. MR 0239066 (39:425)
  • [7] M. Skwarczyński, The invariant distance in the theory of pseudoconformal transformations and the Lu Qi-Keng conjecture, Proc. Amer. Math. Soc. 22 (1969), 305-310. MR 0244512 (39:5826)
  • [8] N. Suita and A. Yamada, On the Lu Qi-Keng conjecture, Proc. Amer. Math. Soc. 59 (1976), 222-224. MR 0425185 (54:13142)
  • [9] J. J. O. O. Wiegerinck, Domains with finite dimensional Bergman space, Math. Z. 187 (1984), 559-562. MR 760055 (86a:32049)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 32H10, 32A07, 32H05

Retrieve articles in all journals with MSC: 32H10, 32A07, 32H05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1986-0835902-8
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society