Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On a theorem of Hardy and Littlewood on the polydisc


Author: Hong Oh Kim
Journal: Proc. Amer. Math. Soc. 97 (1986), 403-409
MSC: Primary 32A35; Secondary 30D55
DOI: https://doi.org/10.1090/S0002-9939-1986-0840619-X
MathSciNet review: 840619
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove the polydisc version of the theorem of Hardy and Littlewood on the fractional integral: If $ 0 < \alpha < 1/p$ and if $ f \in {H^p}$, then $ {I^\alpha }f \in {H^q}$ with $ q = p/(1 - \alpha p)$ where $ {I^\alpha }f$ is the fractional integral of $ f$ of order $ \alpha $.


References [Enhancements On Off] (What's this?)

  • [1] P. L. Duren, Theory of $ {H^p}$ spaces, Academic Press, New York, 1970. MR 0268655 (42:3552)
  • [2] T. M. Flett, The dual of an inequality of Hardy and Littlewood and some related inequalities, J. Math. Anal. Appl. 38 (1972), 746-765. MR 0304667 (46:3799)
  • [3] A. Frazier, The dual space of $ {H^p}$ of the polydisc for $ 0 < p < 1$, Duke Math. J. 39 (1972), 369-379. MR 0293119 (45:2198)
  • [4] G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals. II, Math. Z. 34 (1932), 403-439. MR 1545260
  • [5] -, Theorems concerning mean values of analytic or harmonic functions, Quart. J. Math. 12 (1941), 221-256. MR 0006581 (4:8d)
  • [6] B. Jawerth and A. Torchinsky, On a Hardy and Littlewood imbedding theorem, preprint.
  • [7] H. O. Kim. Derivatives of Blaschke products, Pacific J. Math. 114 (1984), 175-191. MR 755488 (85h:30045)
  • [8] W. Rudin, Function theory in polydiscs, Benjamin, New York, 1969. MR 0255841 (41:501)
  • [9] -, Function theory in the unit ball of $ {C^n}$, Springer-Verlag, New York, 1980.
  • [10] A. Zygmund, On the boundary value of functions of several complex variables. I, Fund. Math. 36 (1949), 207-235. MR 0035832 (12:18b)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 32A35, 30D55

Retrieve articles in all journals with MSC: 32A35, 30D55


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1986-0840619-X
Keywords: Fractional integral, maximal theorem, Hardy space
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society