Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A geometrical characterization of singly generated Douglas algebras


Author: Keiji Izuchi
Journal: Proc. Amer. Math. Soc. 97 (1986), 410-412
MSC: Primary 46J15; Secondary 30H05, 46J30
DOI: https://doi.org/10.1090/S0002-9939-1986-0840620-6
MathSciNet review: 840620
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If $ B$ is a Douglas algebra with $ B_ \ne ^ \supset {H^\infty } + C$, then $ B$ is singly generated if and only if ball $ (B/{H^\infty } + C)$ has an extreme point.


References [Enhancements On Off] (What's this?)

  • [1] S. Axler, I. D. Berg, N. Jewell and A. L. Shields, Approximation by compact operators and the space $ {H^\infty } + C$, Ann. of Math. (2) 109 (1979), 601-612. MR 534765 (81h:30053)
  • [2] S-Y. A. Chang, A characterization of Douglas subalgebras, Acta Math. 137 (1976), 81-89. MR 0428044 (55:1074a)
  • [3] J. Garnett, Bounded analytic functions, Academic Press, New York, 1981. MR 628971 (83g:30037)
  • [4] I. Glicksberg, Measures orthogonal to algebras and sets of antisymmetry, Trans. Amer. Math. Soc. 105 (1962), 415-435. MR 0173957 (30:4164)
  • [5] K. Izuchi, QC-level sets and quotients of Douglas algebras, J. Funct. Anal. 65 (1986). MR 826428 (87f:46093)
  • [6] K. Izuchi and Y. Izuchi, Extreme and exposed points in quotients of Douglas algebras by $ {H^\infty }$ or $ {H^\infty } + C$, Yokohama Math. J. 32 (1984), 45-54. MR 772904 (86d:46045)
  • [7] D. Marshall, Subalgebras of $ {L^\infty }$ containing $ {H^\infty }$, Acta Math. 137 (1976), 91-98. MR 0428045 (55:1074b)
  • [8] D. Sarason, Functions of vanishing mean oscillation, Trans. Amer. Math. Soc. 207 (1975), 391-405. MR 0377518 (51:13690)
  • [9] R. Younis, Division in Douglas algebras and some applications, preprint. MR 818297 (87b:46059)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46J15, 30H05, 46J30

Retrieve articles in all journals with MSC: 46J15, 30H05, 46J30


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1986-0840620-6
Keywords: Douglas algebra, extreme point, inner function
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society