Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On perfect $ C\sp \ast$-algebras


Author: R. J. Archbold
Journal: Proc. Amer. Math. Soc. 97 (1986), 413-417
MSC: Primary 46L05
DOI: https://doi.org/10.1090/S0002-9939-1986-0840621-8
MathSciNet review: 840621
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that injective $ {C^ * }$-algebras are perfect, as are certain maximal simple $ {C^ * }$-algebras. Some properties of the perfect $ {C^ * }$-algebra $ {A_c}$ arising from a UHF algebra $ A$ are obtained by considering a masa with the extension property.


References [Enhancements On Off] (What's this?)

  • [1] C. A. Akemann, J. Anderson and G. K. Pedersen, Diffuse sequences and perfect $ {C^ * }$ -algebras, preprint.
  • [2] C. A. Akemann and F. W. Shultz, Perfect $ {C^ * }$ -algebras, Mem. Amer. Math. Soc. 55 (1985), No. 326. MR 787540 (87h:46117)
  • [3] J. Anderson, Extensions, restrictions, and representations of states on $ {C^ * }$ -algebras, Trans. Amer. Math. Soc. 249 (1979), 303-329. MR 525675 (80k:46069)
  • [4] -, A conjecture concerning the pure states of $ B(H)$ and a related theorem, Topics in Modern Operator Theory, Birkhäuser, Basel, 1981, pp. 27-43.
  • [5] R. J. Archbold, Certain properties of operator algebras, Ph.D. Thesis, Newcastle-upon-Tyne, 1972.
  • [6] -, An averaging process for $ {C^ * }$ -algebras related to weighted shifts, Proc. London Math. Soc. 35 (1977), 541-554. MR 0512359 (58:23620)
  • [7] -, Extensions of states of $ {C^ * }$ -algebras, J. London Math. Soc. 21 (1980), 351-354. MR 575394 (83e:46053)
  • [8] R. J. Archbold and C. J. K. Batty, Extensions of factorial states of $ {C^ * }$ -algebras, J. Funct. Anal. 63 (1985), 86-100. MR 795518 (86m:46055)
  • [9] R. J. Archbold, J. W. Bunce and K. D. Gregson, Extensions of states of $ {C^ * }$ -algebras. II, Proc. Roy. Soc. Edinburgh Sect. A 92 (1982), 113-122. MR 667130 (84a:46134)
  • [10] I. D. Birrell, Maximal simple $ {C^ * }$ -algebras. I, Bull. London Math. Soc. 6 (1974), 141-144. MR 0365156 (51:1409)
  • [11] J. Cuntz, Simple $ {C^ * }$ -algebras generated by isometries, Comm. Math. Phys. 57 (1977), 173-185. MR 0467330 (57:7189)
  • [12] J. Dixmier, $ {C^ * }$ -algebras, North-Holland, Amsterdam, 1977. MR 0458185 (56:16388)
  • [13] E. G. Effros and E. C. Lance, Tensor products of operator algebras, Adv. in Math. 25 (1977), 1-34. MR 0448092 (56:6402)
  • [14] U. Haagerup and L. Zsido, Sur la propriété de Dixmier pour les $ {C^ * }$ -algebres, C. R. Acad. Sci. Paris Sér. I 298 (1984), 173-176. MR 741088 (85i:46077)
  • [15] R. V. Kadison and I. M. Singer, Extensions of pure states, Amer. J. Math. 81 (1959), 383-400. MR 0123922 (23:A1243)
  • [16] G. K. Pedersen, $ {C^ * }$ -algebras and their automorphism groups, Academic Press, London, 1979. MR 548006 (81e:46037)
  • [17] F. W. Shultz, Pure states as a dual object for $ {C^ * }$ -algebras, Comm. Math. Phys. 82 (1982), 497-509. MR 641911 (83b:46080)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46L05

Retrieve articles in all journals with MSC: 46L05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1986-0840621-8
Keywords: Perfect $ {C^ * }$-algebra, injective, maximal simple, masa, UHF algebra
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society