JOINTLY QUASINORMAL ISOMETRIES
MARY EMBRY-WARDROP AND RICHARD J. FLEMING

ABSTRACT. If U and V are isometries each of which commutes with U^*V and V^*U, then a necessary and sufficient condition that U and V commute is that the ranges of U and V are equal. This result leads to the construction of a subnormal-valued analytic function which has no normal extension.

In [2] Globevnik and Vidav proved that if f is an analytic function whose values are normal operators on a Hilbert space X, then the range of f is abelian. In [1] Fleming and Jamison ask if this result is valid when the values of a function are subnormal or even quasinormal. A related question is whether an analytic subnormal-valued function has an extension to an analytic normal-valued function. The answer to each of these questions is no, as will be seen in Example 2.

A sufficient condition that the values of an analytic function f be quasinormal is that $A(B^*C) = (B^*C)A$ whenever A, B, and C are coefficients of f. If this condition holds and A and B are coefficients of f, then each of A and B commutes with each of A^*A, A^*B, B^*A and B^*B, in which case we shall call A and B jointly quasinormal. For the simple analytic function $f(z) = A + zB$ we can now paraphrase the question in [1] by asking whether A and B commute when A and B are jointly quasinormal. The answer to this question is also no, as will be seen in Example 1.

The key to the answers of the above-mentioned questions is in the following theorem concerning isometries. The terminology used in the paper is as follows: A is normal if A commutes with A^*, quasinormal if A commutes with A^*A, an isometry if $A^*A = I$, and a partial isometry if A^*A is a projection. Basic facts concerning these special operators can be found in [3]. The range of an operator A is denoted by $A(X)$.

THEOREM. If U and V are jointly quasinormal isometries, the following are equivalent:

(i) $UV = VU$,
(ii) $UV(X) = VU(X)$,
(iii) $U(X) = V(X)$.

PROOF. (i)\Rightarrow(ii) trivially. To see that (ii)\Rightarrow(iii) note that if $UV(X) = VU(X)$ then $U^*UV(X) = U^*VU(X)$. Consequently, $V(X) = U(U^*V)(X)$ since U is an isometry and U and V are jointly quasinormal. Thus, $V(X) \subset U(X)$ if $UV(X) = VU(X)$ and by symmetry $U(X) \subset V(X)$ also. To see that (iii)\Rightarrow(i) assume that $U(X) = V(X)$ or equivalently $UU^* = VV^*$ since U and V are (partial) isometries. Let $K = UV - VU$ and note that $K(X) \subset U(X)$ since $V(X) \subset U(X)$. Furthermore, $U^*K = U^*UV - U^*VU = V - UU^*V$ (since U is an isometry and U and V are...
jointly quasinormal) = \(V - VV^*V \) (since \(VV^* = UU^* \)) = 0 (since \(V \) is an isometry). Therefore, \(U^*K = 0 \), so that \(K(X) \) is orthogonal to \(U(X) \). We previously showed \(K(X) \subset U(X) \) also. These two results imply that \(K = 0 \) or that \(UV = VU \), as desired. Q.E.D.

This theorem makes the task of constructing noncommuting jointly quasinormal operators easy. Alan Lambert first suggested the simple construction in Example 1.

EXAMPLE 1. Let \(X \) be a Hilbert space with orthonormal basis \(\{e_n : n = 1, 2, \ldots \} \). Let \(U \) and \(V \) be the isometries for which \(Ue_n = e_{2n} \) and \(Ve_n = e_{2n-1} \). \(U \) and \(V \) do not commute since \(UVe_1 = e_2 \) and \(VUe_1 = e_3 \). On the other hand, \(U^*V = V^*U = 0 \) since \(U(X) \) and \(V(X) \) are orthogonal. Since \(U^*U = V^*V = I \), all of the commutation properties for the joint quasinormality of \(U \) and \(V \) are satisfied trivially.

EXAMPLE 2. Let \(U \) and \(V \) be the noncommuting jointly quasinormal isometries in Example 1 and define \(f(z) = U + zV \) for each complex number \(z \). Note that \(f(z)^*f(z) = (1 + |z|^2)I \) where \(I \) is the identity operator, so that each value \(f(z) \) is quasinormal, and consequently, subnormal. Thus we have an example of a subnormal-valued analytic function with nonabelian range. To see that this also provides us with a subnormal-valued analytic function which does not have a normal-valued analytic extension we need only recall that such an extension would have an abelian range [2]. This, of course, would force \(f \) to have an abelian range.

We close with two observations. If \(A \) and \(B \) are jointly quasinormal operators with canonical polar decompositions \(UP \) and \(VQ \), respectively, then \(U \) and \(V \) are jointly quasinormal partial isometries. (The proof of this depends upon a rather lengthy, but elementary, algebraic computation.) Moreover, the jointly quasinormal operators \(A \) and \(B \) commute exactly when \(U \) and \(V \) commute. Secondly, it follows easily from the Theorem that when \(U \) and \(V \) are jointly quasinormal partial isometries, a necessary and sufficient condition for \(U \) and \(V \) to commute is that \(UV(X) = VU(X) \). Thus, the general question of commutativity of quasinormal operators reduces to consideration of their partially isometric factors.

REFERENCES

DEPARTMENT OF MATHEMATICS, CENTRAL MICHIGAN UNIVERSITY, MT. PLEASANT, MICHIGAN 48858