A partition theorem for triples
Authors:
E. C. Milner and K. Prikry
Journal:
Proc. Amer. Math. Soc. 97 (1986), 488494
MSC:
Primary 04A20; Secondary 03E05, 03E50, 06A05
MathSciNet review:
840635
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Consider a partition of triples of enumerable ordinals into two classes. We show that either for each natural number , the first class contains all triples from a set of type , or the second class contains all triples of a four element set.
 [1]
James
E. Baumgartner, A new class of order types, Ann. Math. Logic
9 (1976), no. 3, 187–222. MR 0416925
(54 #4988)
 [2]
J.
Baumgartner and A.
Hajnal, A proof (involving Martin’s axiom) of a partition
relation, Fund. Math. 78 (1973), no. 3,
193–203. MR 0319768
(47 #8310)
 [3]
Ben
Dushnik and E.
W. Miller, Partially ordered sets, Amer. J. Math.
63 (1941), 600–610. MR 0004862
(3,73a)
 [4]
P. Erdös, A. Hajnal, A. Máté and R. Rado, Combinatorial set theory, Akad. Kiadó, Budapest; NorthHolland, Amsterdam, 1984.
 [5]
P.
Erdös and R.
Rado, A partition calculus in set
theory, Bull. Amer. Math. Soc. 62 (1956), 427–489. MR 0081864
(18,458a), http://dx.doi.org/10.1090/S000299041956100360
 [6]
F. Galvin, A letter addressed to P. Erdös dated October 12, 1970.
 [7]
F.
Galvin, On a partition theorem of Baumgartner and Hajnal,
Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P.
Erdős on his 60th birthday), Vol. II, NorthHolland, Amsterdam,
1975, pp. 711–729. Colloq. Math. Soc. János Bolyai, Vol.
10. MR
0376355 (51 #12531)
 [8]
Thomas
Jech, Set theory, Academic Press [Harcourt Brace Jovanovich,
Publishers], New YorkLondon, 1978. Pure and Applied Mathematics. MR 506523
(80a:03062)
 [9]
Handbook of mathematical logic, NorthHolland Publishing Co.,
AmsterdamNew YorkOxford, 1977. Edited by Jon Barwise; With the
cooperation of H. J. Keisler, K. Kunen, Y. N. Moschovakis and A. S.
Troelstra; Studies in Logic and the Foundations of Mathematics, Vol. 90. MR 0457132
(56 #15351)
 [1]
 J. Baumgartner, A new class of order types, Ann. of Math. Logic 9 (1976), 187222. MR 0416925 (54:4988)
 [2]
 J. Baumgartner and A. Hajnal, A proof (involving Martin's Axiom) of a partition relation, Fund. Math. 78 (1973), 193203. MR 0319768 (47:8310)
 [3]
 B. Dushnik and E. W. Miller, Partially ordered sets, Amer. J. Math. 63 (1941), 600610. MR 0004862 (3:73a)
 [4]
 P. Erdös, A. Hajnal, A. Máté and R. Rado, Combinatorial set theory, Akad. Kiadó, Budapest; NorthHolland, Amsterdam, 1984.
 [5]
 P. Erdös and R. Rado, A partition calculus in set theory, Bull. Amer. Math. Soc. 62 (1956), 427489. MR 0081864 (18:458a)
 [6]
 F. Galvin, A letter addressed to P. Erdös dated October 12, 1970.
 [7]
 , On a partition theorem of Baumgartner and Hajnal, Colloq. Math. Soc. Janos Bolyai 10 (1973), 711729. MR 0376355 (51:12531)
 [8]
 T. Jech, Set theory, Academic Press, New York, 1978. MR 506523 (80a:03062)
 [9]
 M. E. Rudin, Martin's Axiom, Handbook of Mathematical Logic (J. Barwise, Ed.), NorthHolland, Amsterdam, 1977, pp. 491501. MR 0457132 (56:15351)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
04A20,
03E05,
03E50,
06A05
Retrieve articles in all journals
with MSC:
04A20,
03E05,
03E50,
06A05
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939198608406358
PII:
S 00029939(1986)08406358
Keywords:
Partition relation,
Martin's Axiom,
real type
Article copyright:
© Copyright 1986
American Mathematical Society
