Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Invariant ideals and Borel sets


Author: Andrzej Pelc
Journal: Proc. Amer. Math. Soc. 97 (1986), 503-506
MSC: Primary 04A15; Secondary 03E05, 28A05
DOI: https://doi.org/10.1090/S0002-9939-1986-0840637-1
MathSciNet review: 840637
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We investigate the size of the algebra $ \mathcal{B}(I)$, where $ \mathcal{B}$ is the family of Borel sets and $ I$ is a translation invariant ideal of sets of reals. In particular the question whether $ \mathcal{B}(I)$ can contain Vitali selectors or even all sets of reals is discussed in connection with the completeness of $ I$ and its invariance.


References [Enhancements On Off] (What's this?)

  • 1. J. Brzuchowski and J. Cichoń, Miara $ i$ kategoria, unpublished.
  • [1] D. A. Martin and R. M. Solovay, Internal Cohen extensions, Ann. of Math. Logic 2 (1970), 143-178. MR 0270904 (42:5787)
  • [2] A. Pele, Invariant measures and ideals on discrete groups, Dissertationes Math. (in print).
  • [3] C. Ryll-Nardzewski and R. Telgársky, The nonexistence of universal invariant measures, Proc. Amer. Math. Soc. 69 (1978), 240-242. MR 0466494 (57:6372)
  • [4] A. Taylor, On the cardinality of the algebra $ \mathcal{P}(k)/I$, handwritten notes.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 04A15, 03E05, 28A05

Retrieve articles in all journals with MSC: 04A15, 03E05, 28A05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1986-0840637-1
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society