Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Some finite quotients of the mapping class group of a surface

Author: Patricia L. Sipe
Journal: Proc. Amer. Math. Soc. 97 (1986), 515-524
MSC: Primary 32G15; Secondary 57N05
MathSciNet review: 840639
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ S$ be a smooth, oriented, compact surface of genus $ p \geqslant 2$, and $ {\operatorname{Mod} _p}$ its Teichmüller modular group (or mapping class group). Let $ {T_1}(S)$ denote the unit tangent bundle, and let $ n$ be an integer dividing $ 2p - 2$. $ {\operatorname{Mod} _p}$ acts on the finite set $ {\Phi _n}$, the elements of which are certain homomorphisms from $ {H_1}({T_1}(S),{{\mathbf{Z}}_n})$ to $ {{\mathbf{Z}}_n}$. In previous work of the author, these homomorphisms arose as the topological description of the $ n$th roots of the canonical bundle of the universal Teichmüller curve; however, a topological approach is taken here. The subgroups of $ {G_{p,n}}$ which leave all elements of $ {\Phi _n}$ fixed are subgroups of finite index in $ {\operatorname{Mod} _p}$. Let $ {Q_n} = {\operatorname{Mod} _p}/{G_{p,n}}$. The elements of $ {Q_n}$ are characterized algebraically. $ {Q_n}$ is an extension of $ {(2{{\mathbf{Z}}_n})^{2p}}$ by the symplectic group $ {\text{Sp(p,}}{{\mathbf{Z}}_n})$ (and in the case of $ n \operatorname{odd}, {Q_n}$ is a semidirect product).

References [Enhancements On Off] (What's this?)

  • [1] M. F. Atiyah, Riemann surfaces and spin structures, Ann. Sci. École Norm. Sup. (4) 4 (1971), 47-62. MR 0286136 (44:3350)
  • [2] C. J. Earle, Families of Riemann surfaces and Jacobi varieties, Ann. of Math. 107 (1978), 255-286. MR 0499328 (58:17227)
  • [3] -, Roots of the canonical divisor class over Teichmüller space, preprint.
  • [4] D. Johnson, Spin structures and quadratic forms on surfaces, J. London Math. Soc. 22 (1980), 365-373. MR 588283 (81m:57015)
  • [5] W. B. R. Lickorish, A finite set of generators for the homeotopy group of a $ 2$-manifold, Proc. Cambridge Philos. Soc. 60 (1964), 769-778. MR 0171269 (30:1500)
  • [6] D. Mumford, Abelian quotients of the Teichmüller modular group, J. Analyse Math. 18 (1967), 227-244. MR 0219543 (36:2623)
  • [7] C. L. Siegel, Topics in complex function theory, Vol. II, Wiley, New York, 1971. MR 1008931 (90h:30003)
  • [8] P. L. Sipe, Roots of the canonical bundle of the universal Teichmüller curve, Thesis, Cornell Univ., 1979.
  • [9] -, Roots of the canonical bundle of the universal Teichmüller curve and certain subgroups of the mapping class group, Math. Ann. 260 (1982), 67-92. MR 664367 (84a:32034)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 32G15, 57N05

Retrieve articles in all journals with MSC: 32G15, 57N05

Additional Information

Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society