NONARCHIMEDEAN $C^\#(X)$

JESUS M. DOMÍNGUEZ

ABSTRACT. Let E be a nonarchimedean rank-one valued field, and X an ultraregular topological space. We consider the Gelfand subalgebra $C^\#(X, E)$ of the algebra of all E-valued continuous functions on X, and the algebra $F(X, E)$ consisting of those E-valued continuous functions f for which there exists a compact set $K \subset X$ such that $f(X - K)$ is finite. We obtain some characterizations of $C^\#(X, E)$, analogous to those obtained in the real case, which we use to find conditions that imply the equality $C^\#(X, E) = F(X, E)$ holds.

For T a completely regular topological space and $C(T, R)$ the space of continuous real valued functions on T, let $C^\#(T, R)$ denote the Gelfand subalgebra of $C(T, R)$, consisting of all $f \in C(T, R)$ with the property that, for every maximal ideal m of $C(T, R)$, there exists an $r \in R$ such that $(f - r) \in m$. We shall denote by $F(T, R)$ the subalgebra of $C(T, R)$ consisting of those $f \in C(T, R)$ for which there exists a compact $K \subset T$ (K depending on f) such that $f(T - K)$ is finite. The basic properties of $C^\#(T, R)$ are established in \[NR, C and SZ\], and they are summarized in \[H, Theorem 2.1\]. It follows from \[SZ and N\] that if T is a real compact and locally compact space or if T is a normal metacompact and locally compact space, then $C^\#(T, R) = F(T, R)$.

Now, let E be a nonarchimedean rank-one valued field (which we do not assume to be complete), and X an ultraregular topological space. Let $C(X, E), C^\#(X, E)$ and $F(X, E)$ stand for the nonarchimedean analogue of the concepts defined above. As the main result in \[D_2\] we saw, that if one assumes X is paracompact and locally compact, then $C^\#(X, E) = F(X, E)$. In the present paper, by using a nonarchimedean analogue of \[H, Theorem 2.1\], we obtain all the results of \[D_2\], with a weaker hypothesis in the case of the main result, as relatively simple corollaries.

If A is a unitary commutative ring, $M(A)$ will denote the set of all maximal ideals of A endowed with the Zariski topology (or hull-kernel topology). Thus $M(C(X, E)) = \beta_0 X$ (the Banaschewski compactification of X). For the rest we shall use the notation of \[BB\] except that we shall use “cl” to denote topological closure.

Let \overline{E} be the completion of the valued field E.

Lemma 1. $C^\#(X, E) = C^\#(X, \overline{E}) \cap C(X, E)$.
PROOF. It suffices to take into account that, by the ultraregular analogue of the Gelfand-Kolmogoroff theorem (see [BB, Theorem 6]), one has a bijection (in fact a homeomorphism) \(\mathcal{M}(C(X, E)) \rightarrow M(C(X, E)) \) sending each maximal ideal \(m^- \) of \(C(X, E^-) \) to \(m^- \cap C(X, E) \).

REMARK. In dealing with \(C^\#(X, E) \), sometimes this lemma can allow us to assume, without loss of generality, that \(E \) is a complete field. In particular, the referee had previously pointed out to us that something like this was necessary to close a gap in the second part of the proof of Proposition 1 of [D2], as the argument we use there does not make apparent that, for incomplete fields, \(f^\beta : M \rightarrow L \) does indeed carry all of \(M \) to \(L \). Now the lemma does close that gap.

Let \(N \) denote the discrete space of positive integers.

Lemma 2. The functions in \(C^\#(N, E) \) are exactly those with finite range.

Proof. If \(f \in C(N, E) \) has a finite range \(f(N) = \{\lambda_1, \ldots, \lambda_n\} \), then \(\Pi(f - \lambda_i) = 0 \). Hence for every maximal ideal \(m \) of \(C(N, E) \) one has \(\Pi(f - \lambda_i) \in m \) and so \(f - \lambda_i \in m \) for some \(\lambda_i \). Thus \(f \in C^\#(N, E) \). In order to see the converse, take \(f \in C(N, E) \) with \(f(N) \) infinite, and for any \(\lambda \in E \) set \(Z_\lambda = f^{-1}(E - \{\lambda\}) \).

The family \((Z_\lambda) \) has the finite intersection property, so there is a maximal ideal \(m \) of \(C(N, E) \) such that \(Z_\lambda \cap Z_{\lambda'} = \emptyset \) for every \(\lambda, \lambda' \in E \) different. For any \(\lambda \in E \) one has \(Z(f - \lambda) \cap Z_\lambda = \emptyset \) and hence \(\{f - \lambda\} \notin m \), so \(f \notin C^\#(N, E) \).

Lemma 3. Let \(f \in C(X, E) \) and assume \(f(X) \) is not precompact. Then there is a clopen partition \((U_i)_{i \in I}\) of \(X \) and there exist \(x_i \in U_i \) such that \(f(\{x_i/i \in I\}) \) is infinite.

Proof. If \(f(X) \) is not precompact, then there exists \(\varepsilon > 0 \) such that \(f(X) \) has no finite covers by \(\varepsilon \)-radius spheres. For every \(\alpha \in f(X) \) set \(B(\alpha) = \{\mu \in E/|\mu - \alpha| \leq \varepsilon\} \). Since any two spheres \(B(\alpha) \) are either equal or disjoint, there exist \((\alpha_i)_{i \in I} \), \(I \) being an infinite set, such that the sets \(B(\alpha_i) \) are pairwise disjoint and form a clopen cover of \(f(X) \). Now set \(U_i = f^{-1}(B(\alpha_i)) \) and choose \(x_i \in X \) such that \(f(x_i) = \alpha_i \).

It will be said that a subset \(S \) of \(X \) is \(C \)-embedded in \(X \) with respect to \(E \) if every continuous function from \(S \) into \(E \) has a continuous extension to \(X \).

In analogy with the Hewitt real compactification of a completely regular space, we let \(\nu_0 X \) be the set of all \(p \in \beta_0 X \) such that, for every sequence \((V_n)\) of neighbourhoods of \(p \) in \(\beta_0 X \), \(\bigcap V_n \cap X \neq \emptyset \).

Now we shall state the nonarchimedean analogue of [H, Theorem 2.1] (see also [SZ, C and NR]).

Theorem 1. If \(f \in C(X, E) \), then the following are equivalent:

(a) \(f \in C^\#(X, E) \),
(b) \(f(D) \) is finite for every copy \(D \) of \(N \) which is \(C \)-embedded in \(X \) with respect to \(E \),
(c) \(f(Z) \) is compact for every \(E \)-zero-set \(Z \) in \(X \),
(d) \(f(X) \) is compact and for every \(\lambda \in E \), \(\text{cl}_{\beta_0 X} Z(f - \lambda) = Z(\beta_0 f - \lambda) \),
(d') \(f(X) \) is relatively compact and for every \(\lambda \in E \), \(\text{cl}_{\beta_0 X} Z(f - \lambda) = Z(\beta_0 f - \lambda) \).
Moreover if E has nonmeasurable cardinality, the above conditions are also equivalent to

(e) $f(X)$ is compact and, for every $p \in \beta_0 X - \nu_0 X$, there is a neighbourhood of p in $\beta_0 X$ on which $\beta_0 f$ is constant.

PROOF. (a)\Rightarrow(b). The restriction map $C(X,E) \to C(D,E)$, $f \mapsto f|_D$ is a surjective E-algebra homomorphism, so if $f \in C^*(X,E)$ then $f|_D \in C^*(D,E)$, and hence by Lemma 2 $f(D)$ is finite.

(b)\Rightarrow(c). Let $Z = Z(g), g \in C(X,E)$. From Lemma 3, $f(X)$ is precompact and so $f(Z)$ is too. To show $f(Z)$ is compact, we are going to see that $f(Z) = \text{cl}_E f(Z)$.

Assume, otherwise, that there exists $\lambda \in \text{cl}_E f(Z) - f(Z)$. Then the set $A = \{x \in X/|g(x)| < |f(x) - \lambda|\}$ is a clopen set such that $Z \subset A$ and $Z(f - \lambda) \subset X - A$, and the continuous function $1/(f - \lambda): A \to E^\sim$ does not have precompact range. By Lemma 3, there is a clopen partition $(U_i)_{i \in I}$ of A and there is $x_i \in U_i$ such that $1/(f - \lambda)$ takes infinite values on the set $\{x_i/i \in I\}$, so $f(\{x_i/i \in I\})$ is infinite. One immediately sees that this is contradictory to the assumption that (b) holds.

(c)\Rightarrow(d). Let $p \in Z(\beta_0 f - \lambda)$. By [BB, Theorem 6], $m_p = \{g \in C(X,E)/p \in \text{cl}_{\beta_0 X} Z(g)\}$ is a maximal ideal and $h \in C(X,E)$ belongs to m_p iff $Z(h)$ meets $Z(g)$ for each g in m_p. By (c), $f(Z(g)) = \beta_0 f(\text{cl}_{\beta_0 X} Z(g))$ for each g in m_p. Thus there exists $x \in Z(g)$ such that $f(x) = \beta_0 f(p) = \lambda$. Hence $Z(f - \lambda) \cap Z(g) \neq \emptyset$ for any g in m_p, from which it follows that $p \in \text{cl}_{\beta_0 X} Z(f - \lambda)$ by [BB, Theorem 6]. Thus $Z(\beta_0 f - \lambda) \subset \text{cl}_{\beta_0 X} Z(f - \lambda)$. The reverse inclusion is clear.

(d)\Rightarrow(d'). It is obvious.

(d')\Rightarrow(a). If $p \in \beta_0 X$, then $p \in Z(\beta_0 f - \beta_0 f(p)) = \text{cl}_{\beta_0 X} Z(f - \beta_0 f(p))$ and so $(f - \beta_0 f(p)) \in m_p$.

(b)\Rightarrow(e). By the above $f(X)$ is compact. Let $p \in \beta_0 X - \nu_0 X$. Then there is a sequence (V_n) of clopen neighbourhoods of p in $\beta_0 X$ such that $\bigcap V_n \cap X = \emptyset$ and such that $V_n \cap X \supset V_{n+1} \cap X$. Assume there is no neighbourhood of p in $\beta_0 X$ on which $\beta_0 f$ is constant. Hence there is a sequence $(x_k), x_k \in (V_{n_k} - V_{n_k+1}) \cap X$ for some increasing sequence (n_k), such that $f(x_k) \neq f(x_j)$ for $k \neq j$. The set $D = \{x_k/k \in N\}$ is a copy of N, C-embedded in X with respect to E, and $f(D)$ is infinite. This is contradictory to the assumption that (b) holds. So there is a neighbourhood of p in $\beta_0 X$ on which $\beta_0 f$ is constant.

(e)\Rightarrow(a). By Lemma 1 we may suppose that E is a complete field, and we may also assume that E is infinite, as $C^*(X,E) = C(X,E)$ if E is finite. Now we make the additional assumption that E has nonmeasurable cardinality. By [BB, Theorem 15] one has $\nu_0 X = \nu_E X$, that is, $\nu_0 X$ is the set of all maximal ideals of $C(X,E)$ of codimension one. To prove $f \in C^*(X,E)$ it suffices to see that if $p \in \beta_0 X - \nu_0 X$ and $\lambda = \beta_0 f(p)$, then $(f - \lambda) \in m_p$ or, equivalently, that $p \in \text{cl}_{\beta_0 X} Z(f - \lambda)$. This last condition is true as by hypothesis $\beta_0 f$ is constantly equal to λ on a neighbourhood of p in $\beta_0 X$.

The following result due to K. Nowinski [N, Theorem 2] will be used in the next corollary:

"If $f : Z \to Y$ is a closed continuous map from a metacompact locally compact Hausdorff space Z to a compact space Y, then there exists a compact $K \subset Z$ such that $f(Z - K)$ is finite".
But first we need a lemma:

Lemma 4. Let $f \in C^\#(X, E)$ and assume X is ultranormal. Then f is a closed map.

Proof. Let B be a closed subset of X, $p \in \text{cl}_{\beta_0}X$ and $\lambda = \beta_0f(p)$. Assume $Z(f - \lambda) \cap B = \emptyset$. Since X is ultranormal, there is a clopen subset A of X such that $Z(f - \lambda) \subset A$ and $B \subset X - A$. Let e_A be the E-valued characteristic function of A. Since $Z(e_A) \supset B$, one has $e_A \in m_p$. On the other hand, since $\lambda = \beta_0f(p)$ and $f \in C^\#(X, E)$, one also has $(f - \lambda) \in m_p$. As $Z(f - \lambda) \cap Z(e_A) = \emptyset$, we get a contradiction. So $f(B) = \beta_0f(\text{cl}_{\beta_0}X B)$ is a closed subset of E.

Corollary 1. In order that $C^\#(X, E) = F(X, E)$ it suffices that any of the following conditions holds:

(a) X is an ultranormal metacompact and locally compact space,
(b) E is a complete field with nonmeasurable cardinal and X is an E-replete locally compact space,
(c) the valuation of E is trivial.

Proof. From (a) and (b) of Theorem 1 (cf. [Di, Proposition 6]), it is evident that $F(X, E) \subset C^\#(X, E)$, so we shall prove the converse. Take $f \in C^\#(X, E)$. Assume that (a) holds. From Lemma 4 and Theorem 1, f is a closed map and $f(X)$ is compact, so $f \in F(X, E)$ by the above result of Nowinski. If the valuation of E is trivial then, for $f \in C^\#(X, E)$, $f(X)$ is compact and thus finite, and so $C^\#(X, E) \subset F(X, E)$. Thus it only remains to prove the inclusion in case E is an infinite field and (b) holds. In this situation one has $X = \nu_E X = \nu_0 X$, and the result follows directly from the equivalence of conditions (a) and (e) in Theorem 1, taking into account the compactness of $\beta_0 X - X$.

Remark. Note that an ultraregular paracompact locally compact space satisfies condition (a) in Corollary 1 (see [E, §1 and V, p. 40]). So Corollary 1 strengthens [D2, Theorem].

Examples. Example 1 below shows that no condition (a), (b) or (c) in Corollary 1 is necessary in order to have $C^\#(X, E) = F(X, E)$. On the other hand, Examples 2 and 3 prove that neither metacompactness nor local compactness can be dropped in (a).

Let Q_p be the field of the p-adic numbers and \bar{Q}_p the algebraic closure of Q_p. Extend to \bar{Q}_p the p-adic absolute value. Let Ω_p be the completion of \bar{Q}_p and again extend to Ω_p the absolute value on \bar{Q}_p. In this way Ω_p is a complete field with respect to a (nonarchimedean) absolute value which extends the p-adic absolute value on Q. Moreover, Ω_p is algebraically closed and therefore it is not locally compact.

For the following examples set $E = \Omega_p$.

Example 1. (see [GJ, p. 123]). Let W be the set of all ordinals less than the first uncountable ordinal endowed with the interval topology. W is an ultranormal locally compact space which is neither metacompact nor E-replete. Nevertheless, $C^\#(W, E) = F(W, E) = C(W, E)$.

Example 2. Let $X = \Omega_p$. Then X is an ultranormal metacompact E-replete space, but we shall see that $C^\#(X, E) \neq F(X, E)$. To see this, set $X_0 = \{\alpha \in X/1 \leq |\alpha|\}$ and $X_n = \{\alpha \in X/1/p^n \leq |\alpha| < 1/p^{n-1}\}$, $n = 1, 2, \ldots$. As the sets
$X_n (n = 0, 1, 2, \ldots)$ are clopen, the function $f: X \to E$, given by $f(0) = 0$ and $f(\alpha) = p^n$ for $\alpha \in X_n$, is continuous, and it is clear that $f \notin F(X,E)$. On the other hand, if D is a C-embedded copy of N, then $D - \{0\}$ is bounded away from 0, so $f(D)$ is finite. From (a) and (b) of Theorem 1, it follows that $f \in C^\#(X,E)$.

Example 3. Let $X = W \times W$. Then X is an ultranormal locally compact space, but $C^\#(X,E) = C(X,E) \neq F(X,E)$. (To see that X is an ultranormal space, note that, by Glicksberg's theorem (or [GJ, 8 M2]), one has $\beta X = \beta W \times \beta W$. Hence βX is an ultraregular compact space, and so the large inductive dimension of βX, Ind(βX), is 0. On the other hand, since X is a normal space, one has Ind(X) = Ind(βX) (see [I, Theorem 8, p. 100]). Thus Ind(X) = 0, and so X is an ultranormal space.)

Example 4 (see [N, Example 3 and D3, Example 3]). Let D be a discrete space of power c, D^* the one-point compactification $D \cup \{w_1\}$ of D, N^* the one-point compactification $N \cup \{w\}$ of N, and $X = N^* \times D^* - \{(w, w_1)\}$. Then X is an ultraregular metacompact space which is neither ultranormal nor E-replete, nevertheless $C^\#(X,E) = F(X,E)$.

As usual, $C_K(X,E)$ will denote the ideal of $C(X,E)$ consisting of those functions with compact support. An ideal J of $C(X,E)$ will be called free if
\[
\bigcap \{Z(f) / f \in J\} = \emptyset.
\]

Corollary 2. Assume that any of the following conditions holds:
(a) X is ultranormal metacompact and locally compact,
(b) E is a complete field with nonmeasurable cardinal and X is E-replete,
(c) the valuation on E is trivial.

Then $C_K(X,E) = \bigcap \{m/m$ is a free maximal ideal of $C(X,E)\}$.

Proof. As in [GJ, 4D] $C_K(X,E)$ is contained in every free (maximal) ideal of $C(X,E)$. To prove the reverse inclusion take f belonging to every free maximal ideal of $C(X,E)$. It is clear that $f \in C^\#(X,E)$. First assume (b). Then from Theorem 1, for any $p \in \beta_0 X - X$ there is a neighbourhood of p in $\beta_0 X$ on which the function $\beta_0 f$ vanishes, so $\beta_0 f$ vanishes on an open neighbourhood of $\beta_0 X - X$, whence $f \in C_K(X,E)$. Now assume (a) or (c). Then from Corollary 1, $f \in F(X,E)$. Let K be a compact subset of X such that $f(X - K) = \{\lambda_1, \ldots, \lambda_n\}$. Since the support of f is contained in the set $K \cup \bigcup\{Z(f - \lambda_i), 1 \leq i \leq n, \lambda_i \neq 0\}$, to complete the proof it suffices to see that $Z(f - \lambda_i)$ is compact for $\lambda_i \neq 0$. But this is true because, reasoning as in [GJ, p. 58], one deduces that, if $Z(f - \lambda_i)$ were not compact, then $f - \lambda_i$ would belong to some free maximal ideal m of $C(X,E)$, which contradicts the fact $f \in m$.

Remark. Corollary 2 strengthens [D2, Corollary].

Theorem 2. If either $A = C^\#(X,E)$ or $A = F(X,E)$, then $M(C(X,E))$ \rightarrow $M(A)$ given by $m \mapsto m \cap A$ is a homeomorphism.

Proof. In both cases A is a subalgebra of $C(X,E)$ containing all the idempotents of $C(X,E)$, and A is closed under inversion (i.e., if $f \in A$ and $Z(f) = \emptyset$, then $1/f \in A$). We shall see that the conclusion of the theorem is true for any such algebra.

First we shall show that every maximal ideal of A is of type $m \cap A$ for some maximal ideal m of $C(X,E)$. Let $M \in M(A)$ and $f_1, \ldots, f_n \in M$. If $\bigcap Z(f_i) = \emptyset$,
then there are idempotents e_1, \ldots, e_n such that $\sum f_i e_i$ is a unit of $C(X, E)$ (see [D$_1$, Lemma]) and, since A is closed under inversion, then $\sum f_i e_i$ is also a unit in A, which is contradictory to $\sum f_i e_i \in M$. So $\bigcap Z(f_i) \neq \emptyset$ and therefore there is a maximal ideal m of $C(X, E)$ containing M. Then one has $M \subset m \cap A$ and, by the maximal character of M, one concludes that $M = m \cap A$.

Now let $m' \in M(C(X, E))$. Then $m' \cap A$ is a proper ideal of A, and hence there is $M \in M(A)$ such that $m' \cap A \subset M$. As we have just seen above, $M = m \cap A$ for some $m \in M(C(X, E))$, so $m' \cap A \subset m \cap A$. From this inclusion and the assumptions on A, it follows that $m = m'$ (see [D$_1$, Corollary to Proposition 2]). This shows that $m' \cap A$ is a maximal ideal of A. The same argument shows that the map $m \mapsto m \cap A$ is injective and, as for the maximal ideals of $C(X, E)$, two maximal ideals of A containing the same idempotents agree. Hence finally one deduces that the map $m \mapsto m \cap A$ is an homeomorphism since it is a one-to-one and onto continuous map between two compact Hausdorff spaces.

I would like to thank the referee for his very valuable comments and suggestions.

REFERENCES

[D$_3$] ———, Note on two subrings of $C(X)$, preprint.

